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Constant False Alarm Rate (CFAR)
or

Detection with adaptive threshold

1) 1-parameter background distribution
2) Single pulse (no integration)
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Fixed threshold non-coherent detection - Review 

Detecting a single pulse of amplitude A, pulse-width tp and frequency wc , in the presence 

of AWGN with power spectral density N0/2, and input BPF bandwidth of fB. 

The noise at the output of the BPF has RMS b.
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fB is wide enough to allow the output pulse (without noise) to build up to the full 

amplitude A of the input pulse.
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r is the random variable whose value is compared 

to a threshold, to decide about detection. 

We will study r’s PDF when A is fixed (non-

fluctuating target) or when A is itself a random 

variable (fluctuating target).
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Non-fluctuating target (A is a constant)
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Rayleigh fluctuating target (A is a r.v.)
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Square-law envelope detection with normalization that 

assumes knowledge of b
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Square-law envelope detection without normalization
2z r
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PD Probability of detection (namely that z will cross a threshold T )
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PFA Probability of false alarm (namely that z will cross a threshold T when A0=0)
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3-way relationship between PD , PFA and SNR
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The strong dependence of PFA on b - numerical example:

We assume  and want               

Setting the threshold  T :
0b b

510FAP 
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But in fact           . Hence the actual false alarm will be:02b b
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Doubling the noise RMS raised the PFA from 0.00001 to 0.056. Unacceptable !

We need an adaptive threshold that will ensure Constant False Alarm Rate (CFAR).
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Justification for CFAR

• The problem is that the interference power isn’t 
known and may change with time, range, or 
Doppler

– so we can’t accurately compute the threshold required to 
achieve a given PFA

From M.A. Richards, Georgia Tech
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Basic CFAR Approach
• Solution: Estimate the unknown interference 

parameter(s) from the data

– So CFAR will be an adaptive processor

• Statistics of interference in neighboring range 
and/or Doppler cells is assumed to be 
representative of the interference in the cell being 
tested

From M.A. Richards, Georgia Tech
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From M.A. Richards, Georgia Tech

Constant False Alarm Rate (CFAR)

• The goal is to adaptively estimate a detection 
threshold for each cell while maintaining a 
constant false alarm rate

• To implement a CFAR processor the following are 
required:
– a desired false alarm probability

– an assumed probability density function for the 
interference (e.g., Rayleigh, Weibull, log-normal)

– an estimate of the local (cell under test) interference 
distribution parameters
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Cell Averaging CFAR (CA-CFAR)
• Threshold set using estimate of the mean of the 

interference in a reference window
• Optimal estimator for homogeneous interference

– unbiased
– minimum variance

• CFAR Loss
– decreases with increasing reference window size
– increases with decreasing PFA

• Vulnerable to masking degradation
– strong interferer in reference window “captures” 

threshold
– exclusion of test cell and adjoining cells from the 

reference window is desired to suppress self-masking.

From M.A. Richards, Georgia Tech
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From M.A. Richards, Georgia Tech

zi

leading 
window

lagging 
window

1D CFAR Window Structure
• Test cell: the value to be compared to 

the threshold
• Guard or gap cell: value not to be 

included in the interference estimate 
due to possible target contamination

• Reference cell: values assumed to be 
interference only, thus used to estimate 
interference parameters

range
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From M.A. Richards, Georgia Tech
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M reference background cells. If the reference cells exhibit the 

envelope r of narrow band noise with RMS b  then they are i.i.d. with 

Rayleigh PDF (from early slide)
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Namely, for a ML estimation of b or b2 we need           
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Then at the output of the square-law detector is 

and z is exponentially distributed

2rz 
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Assume the reference cells include noise only (no target), i.e., A0=0

Square-law envelope detection without normalization
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The relation to the Chi-squared distribution
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Perform change of variables (scaling) from s to y , when:
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The PDF of y  (ver. 1) 
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The PDF of y (ver. 2) )(...)()()( 21 Mzzzy zpzpzpyp 
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Probability of detection PD in the cell under test (CUT)

Swerling I or II target with amplitude PDF 
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From the Detection lectures we have
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CFAR Threshold

• Given a desired PFA and a known or 
assumed interference pdf
– Estimate the local interference 

parameters
• one parameter CFAR: estimate the local 

mean

• two parameter CFAR: estimate the local 
mean and variance

– Scale the estimate to obtain the desired 
threshold (based on a given PFA and pdf)

From M.A. Richards, Georgia Tech
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CFAR LOSS M  the estimate of b is perfect (non-CFAR case)
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CA-CFAR loss,  Swerling 1 or 2
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Thresholds PDF for different number of reference cells
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CFAR Example Parameters

• The following CFAR example 

plot is based on:

–exponentially distributed 

interference (mean = 20 dB)

• implies square law detector

–PFA = 10-4

–Non-fluctuating target, 13 dB 

above the mean interference

From M.A. Richards, Georgia Tech
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CA-CFAR Example
• lag/lead window size = 10 cells, gap size = 3 cells
• target in range bin #50

CFAR threshold

ideal threshold

data

From M.A. Richards, Georgia Tech
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Measures of Effectiveness
• CFAR Loss

– Additional SNR required to obtain the corresponding fixed 
threshold detection performance

– Is a function of the desired PFA, the interference pdf, and 
the target model

• Masking (‘Heterogeneous CFAR Loss’)
– Detection threshold bias due to heterogeneous 

interference within the reference window.
• Target masking

• Clutter-edge masking

• Clutter-Edge False Alarm Suppression
– False alarms associated with the test cell in the vicinity of 

a clutter edge boundary

From M.A. Richards, Georgia Tech
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Real-World Problems with CA-CFAR

• In the real world

– targets can extend over more than one cell, 
thus getting into the assumed “interference 
only” cells and distorting the interference 
estimate

– multiple closely-spaced targets can distort the 
interference estimate for each other

– clutter interference can be nonhomogeneous
due to changes in physical terrain

From M.A. Richards, Georgia Tech
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Self Masking
• If target extends over more than one data cell, it 

can prevent its own detection by raising the 
estimated “interference” level and thus the 
threshold

Gap Size = 0

• lag/lead window size = 10 cells, gap size = 0 cells

From M.A. Richards, Georgia Tech
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Gap Size = 3

Guard Cells Combat Self Masking

• “Guard” or “gap” cells neighboring the cell 

under test are excluded from the mean 

estimate:
• lag/lead window size = 10 cells, gap size = 3 cells

From M.A. Richards, Georgia Tech
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• Nonfluctuating target, 13 dB above the 20 dB 
interference

• PFA = 10-4

False Alarms at Clutter Edges 
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d
B

Mean Interference = 20 dB Mean Interference = 29 dB

target clutter spike

• lag/lead window size = 10 cells, gap size = 3 cells

From M.A. Richards, Georgia Tech
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Clutter-Edge Masking

• lag/lead window size = 10 cells, gap size = 3 cells
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target clutter spike

Mean Interference = 20 dB Mean Interference = 29 dB

From M.A. Richards, Georgia Tech



Nadav Levanon, Tel-Aviv University

34

Radar Principles - Extended

LECTURE K  CFAR  SLIDE

CA-CFAR Modifications for Enhanced 
Performance in Heterogeneous Interference

• Greater-of CA-CFAR (GOCA-CFAR)
– Use of the greater-of (lead or lag window sum)

– Suppresses clutter-edge false alarms

– Degrades masking performance

– Increases homogeneous CFAR Loss: 0.1 to 0.3 dB

• Smaller-of CA-CFAR (SOCA-CFAR)
– Use of the smaller-of (lead or lag window sum)

– Suppresses single-window interference masking

– Increases clutter edge false alarms

– Markedly increases CFAR loss for small M

From M.A. Richards, Georgia Tech
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Greater-of CA-CFAR Example
• Reduced false alarms at clutter edges

• Masking is worse

bin index
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GOCA-CFAR

CA-CFAR

GOCA

Mean Interference = 20 dB Mean Interference = 29 dB

From M.A. Richards, Georgia Tech
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Smaller-of CA-CFAR Example
• Increased false alarms at clutter edges

• Masking is reduced
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Mean Interference = 20 dB Mean Interference = 29 dB

From M.A. Richards, Georgia Tech
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• Proposed for reducing masking degradation

• Steps:
– Rank order the reference cells {z(1), …, z(M)} by their 

magnitude, where z(M) is the largest sample

– Estimate the interference power as equal to the kth

sample in the ordered sequence
• instead of averaging all of the samples, we are choosing one of 

them to serve as the interference estimate!

– The threshold is set as a multiple of this interference 
estimate, as before:

Order Statistics CFAR (OS-CFAR)

 k
T z

From M.A. Richards, Georgia Tech

Rohling H. “Radar CFAR 

thresholding in clutter and 

multiple target situations”, IEEE 

Trans. on Aerospace and 

Electronic Systems, AES-19, (4), 

July 1983, pp. 608-621.
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1z 2z Mzz = r2/2b 2

square-law detector
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The normalization 
is only in the math

We need p(T) which means that we need p[z(k)] = pk(z)
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PDF of the kth ranked sample

• The PDF of the kth ranked sample z(k) , is

p(z) is the PDF of the original r.v. z, P(z) is 
the cumulative distribution function of z

       1 1
M kk

k

M
p z k P z P z p z

k
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)()()2()1( ........... Mk zzzz 

1 2, ,..., ,.....,i Mz z z zWe have M samples of z  

We sort them 

   ( ) ?K Kp z p z What is the PDF of the K’th ranked sample 

The probability that any sample zi is smaller than Z is given by the distribution function:    Pr iz Z P Z 

For the j’th ranked sample to be the highest sample that is smaller than Z, there must be exactly j samples (out 

of a total of M samples) that are smaller than Z. This is the same as the probability of j hits out of M tries, when 

the probability of a hit is P(Z). Hence

They are not ordered by time or size.
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For the k’th ranked sample to be smaller than Z it does not have to be the highest sample that is smaller than 

Z.  If any higher ranked sample is the highest sample that is smaller than Z, then this implies that the k’th

ranked sample is also smaller than Z. Thus, the overall probability that the k’th ranked sample z(k) is smaller than 

Z is given by the sum of the probabilities that z(k) , z(k+1) ,…, z(M) are each the highest-ranked sample that is 

smaller than Z. Namely
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Taking the K’th term out of the first sum, we get:
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The last term in the lower sum, when j=M, is zero. Hence we can terminate the sum earlier:
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PDF of the Threshold

• For square law detector (therefore exponential 
pdf interference)

• Because T =  z, we have

   , 1z zp z e P z e   
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From M.A. Richards, Georgia Tech
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Average PFA

• Put the pieces together:
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From M.A. Richards, Georgia Tech
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(replace ! with gamma 

function for non-integer )

• The result is, for integer ,

or

PFA depends only on k, M, and  therefore CFAR!
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OS-CFAR PFA

From M.A. Richards, Georgia Tech
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   DFAD PSNRP  , 
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Applies also in OS-CFAR, implying:

M – the number of reference cells,  k – the rank of the representative cell
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Example Values of 

•  is the scale factor which multiplies the kth sample 

to determine the threshold T

• Example for M = 16 and PFA = 10-6:

k 2 4 6 8 10 12 14 16

 15,476 443 120 56.6 32.9 20.9 13.7 8.3

From M.A. Richards, Georgia Tech
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Characteristics of OS-CFAR

• Effective masking mitigation if number of interference-

contaminated reference cells is less than M-k.

• Provides good CFAR loss trade-off

– Homogenous interference: 1 dB more than CA-CFAR for same M

– Heterogeneous interference:  minimal masking degradation

• Provides fair clutter-edge false-alarm performance

• Rule-of-thumb: select k = 0.75M

• Major penalty – the computational complexity of sorting

From M.A. Richards, Georgia Tech
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Censored CA-CFAR (CCA-CFAR)

• Attempts to combine attributes of CA-CFAR and OS-CFAR

– Masking mitigation

– Efficient interference estimation

• Implementation

– Rank order reference window

– Edit NH highest and NL Lowest Samples

– Compute mean of remaining samples

• Comparison to OS-CFAR

– Performance is generally similar

– Highly dependent upon specific scenario

From M.A. Richards, Georgia Tech

J.A. Ritcey: “Performance analysis of the censored mean-level detector”, IEEE Trans. 

on AES, vol. 22 (4), July 1986, pp. 443-454 
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The performances of Censored CA–CFAR (when there are 

no interferences in any of the reference cells) is identical to 

the performances of a CA-CFAR with only k reference cells 

(and no interferences in any of those cells). Hence  is 
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CA-CFAR collapses if there is strong interference in any of its 

reference cells. The performances of Censored CA-CFAR 

degrade graciously as long as the number of reference cells with 

interferences  M-k
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Computational complexity of sorting

The average complexity of sorting an n element window changes between 

O(n2) (e.g., Bubble-sort) to O(n log2n)  (e.g., Merge-sort or Quick-sort).

• In CFAR the sorting is repeated after each slide of the CUT. 

• This can be used to update the sorting, rather than perform a new independent 

sort after each slide

• Sorting update is computationally simpler by a factor of n/4  O(4 log2n) 

A slide of the CUT implies 4 changes in the window of reference cells
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Results of two consecutive sorts  (n = 50)
Help understand the sense of sort update
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From Joseph Didi thesis (2018)



Nadav Levanon, Tel-Aviv University

54

Radar Principles - Extended

LECTURE K  CFAR  SLIDE

General CFAR Processor

Rectifier

Law xT

Lagging Window Leading Window

GG
x1 xM/2 xM/2+1

xM

flag(x) flead(x)

g(x)

xT > T Look Up

Table

DATA Processor / 

Operator

Detection 

Report

T 
CFAR

Multiplier

Yes

No

From M.A. Richards, Georgia Tech



Nadav Levanon, Tel-Aviv University

55

Radar Principles - Extended

LECTURE K  CFAR  SLIDE

Summary of CFAR
Algorithm f(x) g(x) Comments

CA-CFAR N/A




N

i

ix
1

1.  Unbiased, minimum-variance estimation for homogeneous

interference.

2.  Subject to masking and clutter-edge false alarms.

GOCA-CFAR




2

1

N

i

ix

Greater of

(flead(x), flag(x))

1.  Suppressed clutter-edge false alarms.

2.  Degraded masking performance.

SOCA-CFAR




2

1

N

i

ix

Smaller of

(flead(x), flag(x))

1.  Improved  masking performance.

2.  Degraded clutter-edge false alarms.

OS-CFAR N/A  kx 1.  Improved masking performance.

2.  Some clutter-edge false alarm improvement.

CCA-CFAR N/A  



H

Ln

Cn 0

1.  Improved masking performance.

2.  Some clutter-edge false alarm improvement.

Alternate Rectification Laws

E-CA-CFAR Discard Xi if Xi > Xmax 1.  Improved masking performance.

2.  Subject to strong clutter false alarms.

L-CA-CFAR Logb(X) 1.  Improved masking performance.

2.  Subject to clutter-edge false alarms.

  .Xor input vectorder -Rank  :X

From M.A. Richards, Georgia Tech
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>> cfar_simul_30

No. of reference cells 

(typ=10 or 30) = ?  30

Representative cell 

(typ=7 or 21) = ?  21

seed = ? 964

SNR [dB]  single pulse 

(typ=16) = ? 16

number of trials  

(typ = 40000) = ? 20000

Pfa_os  = 0.0010

Pd_os   = 0.8172

Pfa_cca = 1.0000e-003

Pd_cca  = 0.8196

>> cfar_simul

No. of reference cells 

(typ=10 or 30) = ?  10

Representative cell 

(typ=7 or 21) = ?  7

seed = ? 964

SNR [dB]  single pulse 

(typ=16) = ? 16

number of trials  

(typ = 40000) = ?  40000

Pfa_os  = 9.7500e-004

Pd_os   = 0.7473

Pfa_cca = 9.7500e-004

Pd_cca  = 0.7534
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CA vs. OS CFAR
performance comparison
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What happens if the background statistics is not Rayleigh, as expected?

Will be demonstrated using Weibull PDF
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C=1   Exponential PDF
C=2   Rayleigh PDF
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1z 2z Mzz = r2

square-law detector
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Pfa increased because C was smaller 
(i.e., PDF tail higher) than assumed.

M = 10,  k = 7
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It is possible to estimate Weibull’s 2-parameters: B and C. 

For example, by using 2 representative sorted cells.

However the estimate is poor and the CFAR loss is likely to be 
higher than if we estimate only B and use the lowest expected C

to calculate  .

The classical CFAR for a 2-parameter background (specifically for 

log-normal or Weibull) is the log-t CFAR suggested by G.B. 

Goldstin* in 1973.

* Goldstein, G. B. “False-alarm regulation in Log-Normal and Weibull clutter,” IEEE Trans. AES, 

Vol. AES-9, (1) , January 1973, pp. 84-92


