PULSE COMPRESSION using FREQUENCY or PHASE CODING

Frequency coding:

• Costas

Phase coding:

- Barker
- Frank
- P3 and P4
- P(n,k)
- Generalized Barker
- MPSL

Costas frequency coding

A Costas signal can be described by an *N* ×*N* binary matrix, with a single "1" (dot) at each raw and at each column, and a distinct vector differences between all pairs of dots. (Costas array) John P. Costas

"The world's ugliest music" by Scott Rickards https://youtu.be/RENk9PK06AQ

The single dot at each raw and at each column implies a frequency hoping signal with:

- Only one carrier used at each time slot (bit).
- Each carrier is used only once.

 $\tau = 2$, $\nu = 0 \implies 0$ coincidence

A binary $N \times N$ array is "Costas" if the number of coincidences between dots in the array and in a shifted copy of it, is never larger than one, for any combination of horizontal (delay) and vertical (Doppler) integer shifts.

At $\tau = 0$ and $\nu = 0$ shifts, there are N coincidences

This are the reasons for the thumbtack shape

At all $\tau = 0$ xor $\nu = 0$ shifts, there are 0 coincidences

Costas J., "A study of a class of detection waveforms having nearly ideal range-doppler ambiguity properties", Proc. IEEE, vol. 72, Aug. 1984, pp. 996-1009.

Golomb, S.W. and Taylor, H., "Constructions and properties of Costas arrays", Proc. IEEE, vol. 72, Sept. 1984, pp. 1143-1163.

Beard, J. K., Russo, J. C., Erickson, K., Monteleone, M., and Wright, M., "Costas array generation and search methodology", IEEE Transactions on Aerospace and Electronic Systems, vol. 43, 2, April 2007, pp. 522-538.

CODING MATRIX

DIFFERENCE MATRIX

Nadav Levanon, Tel-Aviv University

7

SIDELOBE MATRIX

Nadav Levanon, Tel-Aviv University

$$f_n - f_{n-1} = \frac{1}{t_b} \implies \text{Orthogonality}$$

Because of the orthogonality, the ambiguity function at the gird points

$$\chi\left(mt_{b}, \frac{n}{t_{b}}\right)$$

must agree with the values $\{0, 1 \text{ or } N\}$ of the sidelobe matrix

M = 7, Costas 4 7 1 6 5 2 3

LECTURE L SLIDE

9

Because the signal spends equal time (t_b) at each carrier, the frequency spectrum of the envelope should be relatively flat over the frequency span:

LECTURE L SLIDE 10

FREQUENCY CODED WAVEFORMS

An 8x8 Costas array

[18362754]

0	1	0	0	0	0	0	0
0	0	0	0	0	1	0	0
0	0	0	1	0	0	0	0
0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0
0	0	0	0	1	0	0	0
1	0	0	0	0	0	0	0

2-D autocorrelation of the array

0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	1	0	1	0	1	0	0	0	0
0	1	0	0	0	0	1	0	0	0	1	0	0	1	0
0	0	1	0	0	1	0	0	1	1	0	0	0	0	1
0	0	0	1	0	1	1	0	0	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	1	0	1	1	0	0
0	0	0	0	0	0	0	8	0	0	0	0	0	0	0
0	0	1	1	0	1	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	0	0	1	1	0	1	0	0	0
1	0	0	0	0	1	1	0	0	1	0	0	1	0	0
0	1	0	0	1	0	0	0	1	0	0	0	0	1	0
0	0	0	0	1	0	1	0	1	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	1	0	0	0	0	0	0	0	0

Nadav Levanon, Tel-Aviv University

c(N)

Number of Costas arrays

Ν

C(N)

Silverman J., et al "On the number of Costas arrays as a function of array size", Proc. IEEE, Vol 76 (7), July 1988, pp. 851-853.

Beard J. K., et. al "Combinatoric collaboration on Costas arrays and radar applications", IEEE 2004 Radar Conf., Philadelphia, pp. 260-265.

Beard J. k., "Generating Costas arrays to order 200", CISS 2005.

Beard J. K., et. al "Combinatoric collaboration on Costas arrays and radar applications", IEEE 2004 Radar Conf., Philadelphia, pp. 260-265.

Welch 1 construction method for N = (p - 1) = 4, p = primep=5 $GF(5) = \{0\ 1\ 2\ 3\ 4\}$ 2 and 3 are primitive elements of GF(5)Using $\alpha = 2$: $i = 0; i = 2^0 = 1$ $i = 1; i = 2^1 = 2$ \rightarrow Coding sequence = {1 2 4 3} $i = 2; i = 2^2 = 4$ i = 3; $i = 2^3 = 8 \equiv 3 \mod 5$ Using $\alpha = 3$: $i = 0; i = 3^0 = 1$ $i = 1; i = 3^1 = 3$ Coding sequence = $\{1 \ 3 \ 4 \ 2\}$ $i = 2; \quad i = 3^2 = 9 \equiv 4 \mod 5$ j = 3; $i = 3^3 = 27 \equiv 2 \mod 5$ $\{1 \ 2 \ 4 \ 3 \} - 1 = 0 \ 1 \ 3 \ 2 \quad \text{Welch 2} \{1 \ 3 \ 2 \}$

All twelve Costas arrays of size 4

100000010010001010000001001010001000010001000100000100100100000101001000010001000001100000100010

010001001000000101000010001000010100001010000001100000100001100000100100000110000010010000011000

Results of the enumeration of Costas arrays of order 27

Konstantinos Drakakis, Scott Rickard, Rodrigo Caballero, Francesco Iorio, Gareth O'Brien, John Walsh

23 May 2008

29 ECs of Costas arrays were found; 7 are symmetric: $22 \cdot 8 + 7 \cdot 4 = 204$ Costas arrays of order 27 in total.

	•	
Γ	$1\ 3\ 7\ 15\ 2\ 5\ 11\ 23\ 18\ 8\ 17\ 6\ 13\ 27\ 26\ 24\ 20\ 12\ 25\ 22\ 16\ 4\ 9\ 19\ 10\ 21\ 14$	W2
	1 3 19 12 23 5 25 20 10 16 13 27 11 15 2 9 14 8 21 22 18 17 26 6 4 7 24	G2
ľ	1 8 22 18 16 5 23 17 14 19 12 20 26 25 7 10 11 27 3 15 2 21 13 24 9 4 6	G2
ľ	$1\ 25\ 19\ 5\ 4\ 12\ 10\ 16\ 26\ 7\ 18\ 6\ 23\ 27\ 24\ 8\ 21\ 11\ 3\ 22\ 17\ 20\ 13\ 15\ 2\ 9\ 14$	G_2/s
ľ	2 3 14 12 21 5 18 20 26 16 4 27 24 15 1 9 19 8 23 22 25 17 10 6 13 7 11	G_2
ľ	2 8 26 22 10 3 11 6 20 4 14 15 18 27 25 19 1 5 17 24 16 21 7 23 13 12 9	W_2
ľ	2 17 14 12 7 19 18 20 26 16 4 13 24 1 15 23 5 8 9 22 11 3 10 6 27 21 25	G_2
ľ	2 20 3 8 23 7 10 5 1 9 13 22 21 27 18 16 4 25 14 15 17 11 24 6 26 12 19	G_2
ľ	2 20 17 8 9 21 10 19 15 23 27 22 7 13 18 16 4 11 14 1 3 25 24 6 26 12 5	G_2
ľ	2 24 16 4 14 7 5 13 12 1 6 18 27 3 22 8 19 9 15 11 26 23 25 10 17 20 21	G ₂
ľ	2 24 16 4 14 21 19 27 12 15 6 18 13 17 22 8 5 23 1 25 26 9 11 10 3 20 7	G_2
ľ	2 25 8 13 3 23 12 5 19 20 18 22 14 1 27 4 21 16 26 6 17 24 10 9 11 7 15	W_2
ľ	3 9 1 8 13 15 19 4 2 20 11 25 5 17 6 27 14 24 7 10 26 23 22 18 12 21 16	G_2/s
ſ	3 15 6 10 18 8 9 2 13 19 21 26 11 25 12 7 5 27 16 23 22 4 24 20 1 17 14	W2
ľ	3 17 6 19 18 16 22 26 20 27 11 12 5 23 14 2 10 7 9 24 1 4 15 25 21 13 8	G2
ľ	3 24 10 26 20 15 13 23 14 1 8 4 22 19 21 2 5 25 9 17 6 7 11 16 27 12 18	G_2/s
ľ	4 3 7 23 25 16 11 12 15 21 26 22 14 1 27 20 9 17 24 6 18 8 2 13 10 19 5	G2
ſ	4 7 24 22 2 25 10 6 21 20 14 5 26 27 3 15 1 12 18 8 17 9 19 16 23 11 13	G2
ſ	4 17 21 9 11 16 25 12 1 7 26 22 14 15 13 20 23 3 24 6 18 8 2 27 10 5 19	G_2/s
	5 13 11 25 20 4 22 24 18 7 6 2 3 23 8 12 21 27 15 26 1 16 9 19 10 17 14	G2
ľ	5 15 11 4 3 25 13 16 22 24 9 23 27 19 10 17 14 12 21 26 6 1 18 2 20 7 8	G ₂
	5 21 11 18 2 23 19 10 13 24 1 27 3 17 16 25 12 20 22 4 26 15 7 8 14 9 6	G2
ſ	5 25 10 26 2 4 15 22 3 13 7 6 9 23 20 21 27 17 8 1 18 16 12 24 11 19 14	W2
	6 10 23 13 16 1 11 20 15 2 7 26 4 27 9 5 19 25 17 8 24 22 3 21 18 12 14	T_4/s
ſ	6 16 20 12 14 7 1 25 8 17 18 26 11 23 10 24 15 13 3 19 22 27 5 2 9 4 21	G2
	6 16 20 12 14 21 15 11 8 3 18 26 25 9 10 24 1 27 17 5 22 13 19 2 23 4 7	G_2/s
	6 23 14 8 21 1 26 4 22 20 12 11 16 3 17 13 15 24 27 10 5 9 2 18 25 7 19	G_2/s
	7 5 18 6 26 12 16 19 14 3 2 23 17 27 20 22 9 21 1 15 11 8 13 24 25 4 10	W_2
	11 10 4 24 7 23 3 18 21 9 26 16 5 1 15 27 2 25 17 22 19 6 8 12 20 13 14	
-		

Horizontal/vertical flips and transpositions of a Costas array are also Costas arrays: $1 \rightarrow 8$ (or $1 \rightarrow 4$ if symmetric). These are equivalence classes (EC) of Costas arrays.

Advances in Mathematics of Communications Volume 5, No. 1, 2011, 69–86 doi:10.3934/amc.2011.5.69

THE ENUMERATION OF COSTAS ARRAYS OF ORDER 28 AND ITS CONSEQUENCES

Konstantinos Drakakis

School of Electrical, Electronic & Mechanical Engineering University College Dublin, Belfield, Dublin 4, Ireland

Francesco Iorio

Autodesk Research 210 King Street East, Toronto, Ontario M5A 1J7, Canada

SCOTT RICKARD

School of Electrical, Electronic & Mechanical Engineering University College Dublin, Belfield, Dublin 4, Ireland

(Communicated by Andrew Klapper)

ABSTRACT. The results of the enumeration of Costas arrays of order 28 are presented: all arrays found are accounted for by the Golomb and Welch construction methods, making 28 the first order (larger than 5) for which no sporadic Costas arrays exist. The enumeration was performed on several computer clusters and required the equivalent of 70 years of single CPU time. Furthermore, a classification of Costas arrays in four classes is proposed, and it is conjectured, based on the results of the enumeration combined with further evidence, that two of them eventually become extinct.

TABLE 1. A breakdown per class of all known Costas arrays of orders $n \leq 28$: c(n) is the number of Costas arrays of order n, when only one polymorph of each Costas array is considered; G, PE, UE, and S stand for Generated, Predictably Emergent, Unpredictably Emergent, and Sporadic, respectively. Percentages are also provided to facilitate comparisons.

n	c(n)	G	$\rm PE$	UE	S
4	2	2 (100%)	0	0	0
5	6	3(50.00%)	1 (16.67%)	2(33.33%)	0
6	17	6(35.29%)	0	4(23.53%)	7 (41.18%)
7	30	2~(6.67%)	1 (3.33%)	20~(66.67%)	7 (23.33%)
8	60	1 (1.67%)	1 (1.67%)	8 (13.33%)	50~(83.33%)
9	100	5(5.00%)	0	0	95~(95.00%)
10	277	11 (3.97%)	1 (0.36%)	19~(6.86%)	246~(88.81%)
11	555	5(0.90&)	0	20~(3.6%)	530~(95.5%)
12	990	13~(1.31%)	0	17 (1.72%)	960~(96.97%)
13	1616	1 (0.07%)	0	13~(0.80%)	1602~(99.13%)
14	2168	5(0.23%)	0	0	2163~(99.77%)
15	2467	$14 \ (0.57\%)$	1 (0.04%)	3~(0.12%)	2449 (99.27%)
16	2648	33~(1.25%)	1 (0.04%)	16~(0.60%)	2598 (98.11%)
17	2294	9 (0.40%)	0	15~(0.65%)	2270~(98.95%)
18	1892	27 (1.43%)	0	3~(0.16%)	1862 (98.41%)
19	1283	0	0	2~(0.16%)	1281 (99.84%)
20	810	3~(0.37%)	0	0	807~(99.63%)
21	446	20~(4.48%)	0	0	426~(95.52%)
22	259	56 (3.86%)	0	10(21.62%)	193~(74.52%)
23	114	6 (5.26%)	0	8~(7.02%)	100~(87.72%)
24	25	1 (4.00%)	0	0	24 (96.00%)
25	12	7(58.33%)	0	0	5(41.67%)
26	8	3 (37.5%)	1 (12.5%)	2(25.00%)	2(25.00%)
27	29	27 (93.10%)	1(3.45%)	0	1 (3.45%)
28	89	88 (98.88%)	0	1 (1.12%)	0

Table 2: The lexicographically minimal polymorphs of Costas permutations of order 28, shown along with the method producing them. Because of the large numbers of W_1 -arrays, the other arrays are color coded, so that they can be easily located in the array: G_1 appear in *italic blue*, G_3 appear in *italic red*, and G_4 appear in *italic green*.

$1\ 2\ 4\ 8\ 16\ 3\ 6\ 12\ 24\ 19\ 9\ 18\ 7\ 14\ 28\ 27\ 25\ 21\ 13\ 26\ 23\ 17\ 5\ 10\ 20\ 11\ 22\ 15$	W_1
$1\ 3\ 9\ 27\ 23\ 11\ 4\ 12\ 7\ 21\ 5\ 15\ 16\ 19\ 28\ 26\ 20\ 2\ 6\ 18\ 25\ 17\ 22\ 8\ 24\ 14\ 13\ 10$	W_1
$1\ 4\ 16\ 7\ 11\ 19\ 9\ 10\ 3\ 14\ 20\ 22\ 27\ 12\ 26\ 13\ 8\ 6\ 28\ 17\ 24\ 23\ 5\ 25\ 21\ 2\ 18\ 15$	W_1
$1\ 6\ 26\ 11\ 27\ 3\ 5\ 16\ 23\ 4\ 14\ 8\ 7\ 10\ 24\ 21\ 22\ 28\ 18\ 9\ 2\ 19\ 17\ 13\ 25\ 12\ 20\ 15$	W_1
1 8 6 19 7 27 13 17 20 15 4 3 24 18 28 21 23 10 22 2 16 12 9 14 25 26 5 11	W_1
1 10 13 14 24 8 22 17 25 18 6 2 20 26 28 19 16 15 5 21 7 12 4 11 23 27 9 3	W_1
1 10 18 19 3 27 25 28 7 12 2 8 23 6 20 9 22 16 26 21 14 11 13 17 5 4 24 15	W_1
1 14 10 27 7 23 17 12 19 20 18 8 11 2 16 25 22 4 6 5 26 3 9 21 13 24 28 15	W_1
$1 \ 15 \ 22 \ 11 \ 20 \ 10 \ 5 \ 17 \ 23 \ 26 \ 13 \ 21 \ 25 \ 27 \ 28 \ 14 \ 7 \ 18 \ 9 \ 19 \ 24 \ 12 \ 6 \ 3 \ 16 \ 8 \ 4 \ 2$	W_1
1 16 20 3 23 7 13 18 11 10 12 22 19 28 14 5 8 26 24 25 4 27 21 9 17 6 2 15	W_1
1 17 22 13 19 23 24 27 11 8 25 15 28 7 18 6 26 12 21 3 5 20 16 14 9 2 10 4	G_1
$1 \ 18 \ 5 \ 3 \ 25 \ 15 \ 9 \ 17 \ 16 \ 27 \ 22 \ 19 \ 23 \ 8 \ 28 \ 11 \ 24 \ 26 \ 4 \ 14 \ 20 \ 12 \ 13 \ 2 \ 7 \ 10 \ 6 \ 21$	W_1
$1 \ 19 \ 13 \ 15 \ 24 \ 21 \ 22 \ 12 \ 25 \ 11 \ 6 \ 27 \ 20 \ 3 \ 28 \ 10 \ 16 \ 14 \ 5 \ 8 \ 7 \ 17 \ 4 \ 18 \ 23 \ 2 \ 9 \ 26$	W_1
$2\ 1\ 15\ 22\ 11\ 20\ 10\ 5\ 17\ 23\ 26\ 13\ 21\ 25\ 27\ 28\ 14\ 7\ 18\ 9\ 19\ 24\ 12\ 6\ 3\ 16\ 8\ 4$	W_1
$2\ 3\ 7\ 4\ 24\ 8\ 14\ 5\ 12\ 25\ 27\ 9\ 20\ 15\ 1\ 6\ 23\ 13\ 11\ 26\ 19\ 28\ 22\ 10\ 18\ 21\ 17\ 16$	W_1
2 5 17 8 12 20 10 11 4 15 21 23 28 13 27 14 9 7 1 18 25 24 6 26 22 3 19 16	W_1
2 6 18 25 17 22 8 24 14 13 10 1 3 9 27 23 11 4 12 7 21 5 15 16 19 28 26 20	W_1
$2\ 7\ 10\ 6\ 21\ 1\ 18\ 5\ 3\ 25\ 15\ 9\ 17\ 16\ 27\ 22\ 19\ 23\ 8\ 28\ 11\ 24\ 26\ 4\ 14\ 20\ 12\ 13$	W_1
$2\ 7\ 27\ 12\ 28\ 4\ 6\ 17\ 24\ 5\ 15\ 9\ 8\ 11\ 25\ 22\ 23\ 1\ 19\ 10\ 3\ 20\ 18\ 14\ 26\ 13\ 21\ 16$	W_1
2 8 9 6 4 11 26 22 16 25 7 10 23 18 17 5 27 1 15 20 28 21 12 14 24 13 3 19	G_3
2 9 26 1 19 13 15 24 21 22 12 25 11 6 27 20 3 28 10 16 14 5 8 7 17 4 18 23	W_1
2 11 19 20 4 28 26 1 8 13 3 9 24 7 21 10 23 17 27 22 15 12 14 18 6 5 25 16	W_1
$2 \ 13 \ 1 \ 24 \ 20 \ 12 \ 22 \ 7 \ 28 \ 3 \ 25 \ 23 \ 4 \ 5 \ 19 \ 18 \ 9 \ 11 \ 17 \ 14 \ 21 \ 8 \ 26 \ 6 \ 10 \ 15 \ 27 \ 16$	W_1
$2 \ 13 \ 12 \ 20 \ 14 \ 4 \ 26 \ 24 \ 11 \ 28 \ 8 \ 23 \ 19 \ 22 \ 27 \ 16 \ 17 \ 9 \ 15 \ 25 \ 3 \ 5 \ 18 \ 1 \ 21 \ 6 \ 10 \ 7$	W_1
$2 \ 15 \ 11 \ 28 \ 8 \ 24 \ 18 \ 13 \ 20 \ 21 \ 19 \ 9 \ 12 \ 3 \ 17 \ 26 \ 23 \ 5 \ 7 \ 6 \ 27 \ 4 \ 10 \ 22 \ 14 \ 25 \ 1 \ 16$	W_1
$2 \ 16 \ 12 \ 9 \ 14 \ 25 \ 26 \ 5 \ 11 \ 1 \ 8 \ 6 \ 19 \ 7 \ 27 \ 13 \ 17 \ 20 \ 15 \ 4 \ 3 \ 24 \ 18 \ 28 \ 21 \ 23 \ 10 \ 22$	W_1
$2 \ 17 \ 21 \ 4 \ 24 \ 8 \ 14 \ 19 \ 12 \ 11 \ 13 \ 23 \ 20 \ 1 \ 15 \ 6 \ 9 \ 27 \ 25 \ 26 \ 5 \ 28 \ 22 \ 10 \ 18 \ 7 \ 3 \ 16$	W_1
$2 \ 19 \ 3 \ 8 \ 12 \ 20 \ 10 \ 25 \ 4 \ 1 \ 7 \ 9 \ 28 \ 27 \ 13 \ 14 \ 23 \ 21 \ 15 \ 18 \ 11 \ 24 \ 6 \ 26 \ 22 \ 17 \ 5 \ 16$	W_1
2 20 26 28 19 16 15 5 21 7 12 4 11 23 27 9 3 1 10 13 14 24 8 22 17 25 18 6	W_1
$2\ 21\ 13\ 12\ 28\ 4\ 6\ 3\ 24\ 19\ 1\ 23\ 8\ 25\ 11\ 22\ 9\ 15\ 5\ 10\ 17\ 20\ 18\ 14\ 26\ 27\ 7\ 16$	W_1
$2 \ 22 \ 10 \ 23 \ 21 \ 28 \ 18 \ 24 \ 3 \ 4 \ 15 \ 20 \ 17 \ 13 \ 27 \ 7 \ 19 \ 6 \ 8 \ 1 \ 11 \ 5 \ 26 \ 25 \ 14 \ 9 \ 12 \ 16$	W_1
$2\ 23\ 18\ 4\ 17\ 7\ 8\ 5\ 14\ 16\ 10\ 28\ 3\ 20\ 27\ 6\ 11\ 25\ 12\ 22\ 21\ 24\ 15\ 13\ 19\ 1\ 26\ 9$	W_1
$2\ 25\ 5\ 20\ 4\ 28\ 26\ 15\ 8\ 27\ 17\ 23\ 24\ 21\ 7\ 10\ 9\ 3\ 13\ 22\ 1\ 12\ 14\ 18\ 6\ 19\ 11\ 16$	W_1
$2\ 27\ 15\ 24\ 20\ 12\ 22\ 21\ 28\ 17\ 11\ 9\ 4\ 19\ 5\ 18\ 23\ 25\ 3\ 14\ 7\ 8\ 26\ 6\ 10\ 1\ 13\ 16$	W_1

LECTURE L SLIDE 21

$3\ 2\ 26\ 1\ 9\ 25\ 19\ 28\ 21\ 8\ 6\ 24\ 13\ 18\ 4\ 27\ 10\ 20\ 22\ 7\ 14\ 5\ 11\ 23\ 15\ 12\ 16\ 17$	W_1
$3\ 4\ 8\ 5\ 25\ 9\ 15\ 6\ 13\ 26\ 28\ 10\ 21\ 16\ 2\ 7\ 24\ 14\ 12\ 27\ 20\ 1\ 23\ 11\ 19\ 22\ 18\ 17$	W_1
$3\ 4\ 15\ 20\ 17\ 13\ 27\ 7\ 19\ 6\ 8\ 1\ 11\ 5\ 26\ 25\ 14\ 9\ 12\ 16\ 2\ 22\ 10\ 23\ 21\ 28\ 18\ 24$	W_1
$3\ 5\ 18\ 1\ 21\ 6\ 10\ 7\ 2\ 13\ 12\ 20\ 14\ 4\ 26\ 24\ 11\ 28\ 8\ 23\ 19\ 22\ 27\ 16\ 17\ 9\ 15\ 25$	W_1
$3\ 6\ 12\ 24\ 19\ 9\ 18\ 7\ 14\ 28\ 27\ 25\ 21\ 13\ 26\ 23\ 17\ 5\ 10\ 20\ 11\ 22\ 15\ 1\ 2\ 4\ 8\ 16$	W_1
$3\ 6\ 18\ 9\ 13\ 21\ 11\ 12\ 5\ 16\ 22\ 24\ 1\ 14\ 28\ 15\ 10\ 8\ 2\ 19\ 26\ 25\ 7\ 27\ 23\ 4\ 20\ 17$	W_1
3 8 28 13 1 5 7 18 25 6 16 10 9 12 26 23 24 2 20 11 4 21 19 15 27 14 22 17	W_1
$3 \ 12 \ 20 \ 21 \ 5 \ 1 \ 27 \ 2 \ 9 \ 14 \ 4 \ 10 \ 25 \ 8 \ 22 \ 11 \ 24 \ 18 \ 28 \ 23 \ 16 \ 13 \ 15 \ 19 \ 7 \ 6 \ 26 \ 17$	W_1
$3 \ 13 \ 8 \ 25 \ 2 \ 28 \ 15 \ 7 \ 11 \ 9 \ 10 \ 24 \ 17 \ 6 \ 26 \ 16 \ 21 \ 4 \ 27 \ 1 \ 14 \ 22 \ 18 \ 20 \ 19 \ 5 \ 12 \ 23$	W_1
$3 \ 16 \ 8 \ 4 \ 2 \ 1 \ 15 \ 22 \ 11 \ 20 \ 10 \ 5 \ 17 \ 23 \ 26 \ 13 \ 21 \ 25 \ 27 \ 28 \ 14 \ 7 \ 18 \ 9 \ 19 \ 24 \ 12 \ 6$	W_1
3 16 12 1 9 25 19 14 21 22 20 10 13 4 18 27 24 6 8 7 28 5 11 23 15 26 2 17	W_1
3 18 22 5 25 9 15 20 13 12 14 24 21 2 16 7 10 28 26 27 6 1 23 11 19 8 4 17	W_1
$3\ 20\ 4\ 9\ 13\ 21\ 11\ 26\ 5\ 2\ 8\ 10\ 1\ 28\ 14\ 15\ 24\ 22\ 16\ 19\ 12\ 25\ 7\ 27\ 23\ 18\ 6\ 17$	W_1
3 23 12 5 19 20 18 22 14 1 27 4 21 16 26 6 17 24 10 9 11 7 15 28 2 25 8 13	W_1
$3\ 24\ 18\ 28\ 21\ 23\ 10\ 22\ 2\ 16\ 12\ 9\ 14\ 25\ 26\ 5\ 11\ 1\ 8\ 6\ 19\ 7\ 27\ 13\ 17\ 20\ 15\ 4$	W_1
$3\ 26\ 6\ 21\ 5\ 1\ 27\ 16\ 9\ 28\ 18\ 24\ 25\ 22\ 8\ 11\ 10\ 4\ 14\ 23\ 2\ 13\ 15\ 19\ 7\ 20\ 12\ 17$	W_1
3 27 9 6 2 23 10 18 28 12 19 4 21 15 17 20 1 5 14 25 26 24 16 7 13 8 22 11	$\mathbf{G_4}$
4 3 24 18 28 21 23 10 22 2 16 12 9 14 25 26 5 11 1 8 6 19 7 27 13 17 20 15	W_1
4 3 27 2 10 26 20 1 22 9 7 25 14 19 5 28 11 21 23 8 15 6 12 24 16 13 17 18	W_1
4 5 9 6 26 10 16 7 14 27 1 11 22 17 3 8 25 15 13 28 21 2 24 12 20 23 19 18	W_1
4 7 19 10 14 22 12 13 6 17 23 25 2 15 1 16 11 9 3 20 27 26 8 28 24 5 21 18	W_1
4 11 23 27 9 3 1 10 13 14 24 8 22 17 25 18 6 2 20 26 28 19 16 15 5 21 7 12	W_1
4 12 7 21 5 15 16 19 28 26 20 2 6 18 25 17 22 8 24 14 13 10 1 3 9 27 23 11	W_1
4 13 21 22 6 2 28 3 10 15 5 11 26 9 23 12 25 19 1 24 17 14 16 20 8 7 27 18	W_1
4 17 7 8 5 14 16 10 28 3 20 27 6 11 25 12 22 21 24 15 13 19 1 26 9 2 23 18	W_1
4 17 13 2 10 26 20 15 22 23 21 11 14 5 19 28 25 7 9 8 1 6 12 24 16 27 3 18	W_1
4 18 23 2 9 26 1 19 13 15 24 21 22 12 25 11 6 27 20 3 28 10 16 14 5 8 7 17	W_1
4 19 23 6 26 10 16 21 14 13 15 25 22 3 17 8 11 1 27 28 7 2 24 12 20 9 5 18	W_1
4 21 5 10 14 22 12 27 6 3 9 11 2 1 15 16 25 23 17 20 13 26 8 28 24 19 7 18	W_1
4 26 24 11 28 8 23 19 22 27 16 17 9 15 25 3 5 18 1 21 6 10 7 2 13 12 20 14	W_1
4 27 7 22 6 2 28 17 10 1 19 25 26 23 9 12 11 5 15 24 3 14 16 20 8 21 13 18	117
	VV 1
5 2 18 27 23 15 25 24 3 20 14 12 7 22 8 21 26 28 6 17 10 11 1 9 13 4 16 19	$\frac{W_1}{W_1}$

LECTURE L SLIDE 22

5 2 27 12 8 6 13 25 24 26 9 18 4 14 17 28 3 21 11 19 1 23 16 20 15 7 22 10	\mathbf{G}_4
$5\ 6\ 10\ 7\ 27\ 11\ 17\ 8\ 15\ 28\ 2\ 12\ 23\ 18\ 4\ 9\ 26\ 16\ 14\ 1\ 22\ 3\ 25\ 13\ 21\ 24\ 20\ 19$	W_1
$5\ 8\ 20\ 11\ 15\ 23\ 13\ 14\ 7\ 18\ 24\ 26\ 3\ 16\ 2\ 17\ 12\ 10\ 4\ 21\ 28\ 27\ 9\ 1\ 25\ 6\ 22\ 19$	W_1
$5\ 10\ 20\ 11\ 22\ 15\ 1\ 2\ 4\ 8\ 16\ 3\ 6\ 12\ 24\ 19\ 9\ 18\ 7\ 14\ 28\ 27\ 25\ 21\ 13\ 26\ 23\ 17$	W_1
$5\ 12\ 23\ 3\ 13\ 8\ 25\ 2\ 28\ 15\ 7\ 11\ 9\ 10\ 24\ 17\ 6\ 26\ 16\ 21\ 4\ 27\ 1\ 14\ 22\ 18\ 20\ 19$	W_1
$5\ 15\ 16\ 19\ 28\ 26\ 20\ 2\ 6\ 18\ 25\ 17\ 22\ 8\ 24\ 14\ 13\ 10\ 1\ 3\ 9\ 27\ 23\ 11\ 4\ 12\ 7\ 21$	W_1
$5\ 16\ 4\ 27\ 23\ 15\ 25\ 10\ 3\ 6\ 28\ 26\ 7\ 8\ 22\ 21\ 12\ 14\ 20\ 17\ 24\ 11\ 1\ 9\ 13\ 18\ 2\ 19$	W_1
$5\ 17\ 23\ 26\ 13\ 21\ 25\ 27\ 28\ 14\ 7\ 18\ 9\ 19\ 24\ 12\ 6\ 3\ 16\ 8\ 4\ 2\ 1\ 15\ 22\ 11\ 20\ 10$	W_1
$5 \ 19 \ 20 \ 18 \ 22 \ 14 \ 1 \ 27 \ 4 \ 21 \ 16 \ 26 \ 6 \ 17 \ 24 \ 10 \ 9 \ 11 \ 7 \ 15 \ 28 \ 2 \ 25 \ 8 \ 13 \ 3 \ 23 \ 12$	W_1
$5\ 20\ 24\ 7\ 27\ 11\ 17\ 22\ 15\ 14\ 16\ 26\ 23\ 4\ 18\ 9\ 12\ 2\ 28\ 1\ 8\ 3\ 25\ 13\ 21\ 10\ 6\ 19$	W_1
$6\ 3\ 16\ 8\ 4\ 2\ 1\ 15\ 22\ 11\ 20\ 10\ 5\ 17\ 23\ 26\ 13\ 21\ 25\ 27\ 28\ 14\ 7\ 18\ 9\ 19\ 24\ 12$	W_1
$6 \ 9 \ 21 \ 12 \ 16 \ 24 \ 14 \ 15 \ 8 \ 19 \ 25 \ 27 \ 4 \ 17 \ 3 \ 18 \ 13 \ 11 \ 5 \ 22 \ 1 \ 28 \ 10 \ 2 \ 26 \ 7 \ 23 \ 20$	W_1
$6 \ 11 \ 3 \ 16 \ 4 \ 8 \ 10 \ 21 \ 28 \ 9 \ 19 \ 13 \ 12 \ 15 \ 1 \ 26 \ 27 \ 5 \ 23 \ 14 \ 7 \ 24 \ 22 \ 18 \ 2 \ 17 \ 25 \ 20$	W_1
$6\ 23\ 7\ 12\ 16\ 24\ 14\ 1\ 8\ 5\ 11\ 13\ 4\ 3\ 17\ 18\ 27\ 25\ 19\ 22\ 15\ 28\ 10\ 2\ 26\ 21\ 9\ 20$	W_1
$6\ 25\ 17\ 16\ 4\ 8\ 10\ 7\ 28\ 23\ 5\ 27\ 12\ 1\ 15\ 26\ 13\ 19\ 9\ 14\ 21\ 24\ 22\ 18\ 2\ 3\ 11\ 20$	W_1
$6\ 26\ 16\ 21\ 4\ 27\ 1\ 14\ 22\ 18\ 20\ 19\ 5\ 12\ 23\ 3\ 13\ 8\ 25\ 2\ 28\ 15\ 7\ 11\ 9\ 10\ 24\ 17$	W_1
$7\ 2\ 10\ 25\ 9\ 5\ 3\ 20\ 13\ 4\ 22\ 28\ 1\ 26\ 12\ 15\ 14\ 8\ 18\ 27\ 6\ 17\ 19\ 23\ 11\ 24\ 16\ 21$	W_1
$7\ 8\ 5\ 14\ 16\ 10\ 28\ 3\ 20\ 27\ 6\ 11\ 25\ 12\ 22\ 21\ 24\ 15\ 13\ 19\ 1\ 26\ 9\ 2\ 23\ 18\ 4\ 17$	W_1
$7 \ 12 \ 4 \ 17 \ 5 \ 9 \ 11 \ 22 \ 1 \ 10 \ 20 \ 14 \ 13 \ 16 \ 2 \ 27 \ 28 \ 6 \ 24 \ 15 \ 8 \ 25 \ 23 \ 19 \ 3 \ 18 \ 26 \ 21$	W_1
$7 \ 16 \ 24 \ 25 \ 9 \ 5 \ 3 \ 6 \ 13 \ 18 \ 8 \ 14 \ 1 \ 12 \ 26 \ 15 \ 28 \ 22 \ 4 \ 27 \ 20 \ 17 \ 19 \ 23 \ 11 \ 10 \ 2 \ 21$	W_1
$7\ 21\ 5\ 15\ 16\ 19\ 28\ 26\ 20\ 2\ 6\ 18\ 25\ 17\ 22\ 8\ 24\ 14\ 13\ 10\ 1\ 3\ 9\ 27\ 23\ 11\ 4\ 12$	W_1
$7 \ 26 \ 18 \ 17 \ 5 \ 9 \ 11 \ 8 \ 1 \ 24 \ 6 \ 28 \ 13 \ 2 \ 16 \ 27 \ 14 \ 20 \ 10 \ 15 \ 22 \ 25 \ 23 \ 19 \ 3 \ 4 \ 12 \ 21$	W_1
7 27 24 14 16 23 6 17 11 28 13 1 9 15 19 12 8 3 21 22 20 25 4 26 10 2 5 18	\mathbf{G}_4

Nadav Levanon, Tel-Aviv University

The road ahead is now paved for the enumeration of Costas arrays of orders 29, 30, 31, and 32. Of most interest is 32, which is currently the smallest order for which no Costas arrays is known. Using the empirically verified rule of thumb that the complexity of the enumeration increases by 5 from one order to the next, we estimate that the enumeration of order 32 requires $5^4 = 625$ times more time/resources than used now: hence, with 45,000 processors, definitely a large number but not prohibitively so, this enumeration will only take a year.

Advances in Mathematics of Communications Volume 5, No. 3, 2011, 547–553 doi:10.3934/amc.2011.5.547

RESULTS OF THE ENUMERATION OF COSTAS ARRAYS OF ORDER 29

Konstantinos Drakakis

School of Electrical, Electronic & Mechanical Engineering University College Dublin, Belfield, Dublin 4, Ireland

Francesco Iorio

Autodesk Research 210 King Street East, Toronto, Ontario M5A 1J7, Canada

SCOTT RICKARD

School of Electrical, Electronic & Mechanical Engineering University College Dublin, Belfield, Dublin 4, Ireland

JOHN WALSH

Department of Computer Science Trinity College Dublin, College Green, Dublin 2, Ireland The enumeration of Costas arrays of order 29

553

$1\ 6\ 3\ 28\ 13\ 9\ 7\ 14\ 26\ 25\ 27\ 10\ 19\ 5\ 15\ 18\ 29\ 4\ 22\ 12\ 20\ 2\ 24\ 17\ 21\ 16\ 8\ 23\ 11$	G_3
$1 \ 10 \ 3 \ 22 \ 21 \ 23 \ 7 \ 28 \ 14 \ 17 \ 12 \ 9 \ 16 \ 24 \ 15 \ 20 \ 26 \ 11 \ 29 \ 8 \ 4 \ 27 \ 25 \ 5 \ 19 \ 13 \ 2 \ 6 \ 18$	G_3
$1 \ 11 \ 3 \ 25 \ 23 \ 4 \ 7 \ 21 \ 20 \ 22 \ 16 \ 29 \ 9 \ 6 \ 15 \ 5 \ 12 \ 17 \ 10 \ 26 \ 14 \ 18 \ 2 \ 8 \ 28 \ 24 \ 19 \ 27 \ 13$	G_3
$1 \ 12 \ 29 \ 3 \ 25 \ 14 \ 26 \ 19 \ 28 \ 27 \ 18 \ 24 \ 7 \ 4 \ 6 \ 11 \ 21 \ 15 \ 16 \ 2 \ 10 \ 8 \ 22 \ 17 \ 5 \ 20 \ 23 \ 13 \ 9$	G_2
$1 \ 17 \ 22 \ 13 \ 19 \ 23 \ 24 \ 27 \ 11 \ 8 \ 25 \ 15 \ 28 \ 7 \ 18 \ 6 \ 26 \ 12 \ 21 \ 3 \ 5 \ 20 \ 16 \ 14 \ 9 \ 2 \ 10 \ 4 \ 29$	G_0/s
$1 \ 20 \ 14 \ 16 \ 25 \ 22 \ 23 \ 13 \ 26 \ 12 \ 7 \ 28 \ 21 \ 4 \ 29 \ 11 \ 17 \ 15 \ 6 \ 9 \ 8 \ 18 \ 5 \ 19 \ 24 \ 3 \ 10 \ 27 \ 2$	W_0
$1 \ 22 \ 21 \ 17 \ 20 \ 28 \ 16 \ 10 \ 19 \ 12 \ 27 \ 25 \ 15 \ 4 \ 9 \ 23 \ 18 \ 29 \ 11 \ 13 \ 26 \ 5 \ 24 \ 2 \ 14 \ 6 \ 3 \ 7 \ 8$	W_0
$1\ 25\ 22\ 23\ 13\ 26\ 12\ 7\ 28\ 21\ 4\ 29\ 11\ 17\ 15\ 6\ 9\ 8\ 18\ 5\ 19\ 24\ 3\ 10\ 27\ 2\ 20\ 14\ 16$	W_0
2 1 8 12 25 15 18 3 13 22 17 4 9 28 6 29 11 7 21 27 19 10 26 24 5 23 20 14 16	G_2/s
$2\ 8\ 26\ 18\ 25\ 15\ 16\ 19\ 28\ 24\ 12\ 7\ 23\ 9\ 29\ 27\ 21\ 3\ 11\ 4\ 14\ 13\ 10\ 1\ 5\ 17\ 22\ 6\ 20$	W_2
$2\ 23\ 1\ 7\ 5\ 19\ 29\ 24\ 20\ 9\ 3\ 15\ 22\ 10\ 12\ 21\ 14\ 18\ 17\ 4\ 26\ 11\ 27\ 28\ 25\ 8\ 13\ 16\ 6$	G_2
$2\ 28\ 10\ 1\ 25\ 18\ 22\ 20\ 23\ 9\ 27\ 29\ 7\ 13\ 12\ 26\ 3\ 8\ 19\ 14\ 11\ 21\ 6\ 15\ 5\ 24\ 16\ 17\ 4$	G_2
$3 \ 9 \ 20 \ 17 \ 25 \ 12 \ 27 \ 13 \ 7 \ 16 \ 28 \ 1 \ 24 \ 29 \ 18 \ 6 \ 8 \ 22 \ 26 \ 21 \ 19 \ 2 \ 23 \ 15 \ 5 \ 4 \ 14 \ 10 \ 11$	G_2
$3\ 11\ 1\ 10\ 25\ 19\ 14\ 16\ 20\ 4\ 2\ 15\ 27\ 7\ 12\ 8\ 29\ 18\ 6\ 9\ 26\ 23\ 22\ 28\ 5\ 21\ 13\ 24\ 17$	G_2/s
$3\ 21\ 23\ 22\ 8\ 15\ 26\ 6\ 16\ 11\ 28\ 5\ 2\ 18\ 10\ 14\ 12\ 13\ 27\ 20\ 9\ 29\ 19\ 24\ 7\ 1\ 4\ 17\ 25$	RW_0
$4 \ 12 \ 25 \ 28 \ 22 \ 5 \ 10 \ 29 \ 20 \ 9 \ 2 \ 16 \ 17 \ 15 \ 19 \ 11 \ 27 \ 24 \ 1 \ 18 \ 13 \ 23 \ 3 \ 14 \ 21 \ 7 \ 6 \ 8 \ 26$	RW_0
4 26 20 17 5 6 14 10 1 3 9 13 29 11 24 22 21 16 23 28 7 27 12 15 25 18 2 19 8	G_2
$6 \ 19 \ 12 \ 20 \ 25 \ 22 \ 18 \ 8 \ 26 \ 17 \ 1 \ 29 \ 28 \ 9 \ 24 \ 13 \ 14 \ 16 \ 2 \ 11 \ 23 \ 3 \ 7 \ 10 \ 5 \ 27 \ 4 \ 21 \ 15$	W_2
$6\ 26\ 23\ 28\ 5\ 8\ 27\ 1\ 16\ 14\ 7\ 18\ 4\ 21\ 12\ 20\ 2\ 15\ 3\ 9\ 10\ 24\ 19\ 29\ 25\ 17\ 11\ 13\ 22$	G_2/s
$7 \ 13 \ 2 \ 17 \ 5 \ 27 \ 28 \ 21 \ 8 \ 6 \ 20 \ 15 \ 19 \ 22 \ 1 \ 24 \ 18 \ 29 \ 14 \ 26 \ 4 \ 3 \ 10 \ 23 \ 25 \ 11 \ 16 \ 12 \ 9$	W_2
$7 \ 20 \ 28 \ 8 \ 25 \ 15 \ 1 \ 4 \ 23 \ 27 \ 22 \ 14 \ 16 \ 12 \ 6 \ 13 \ 18 \ 17 \ 26 \ 2 \ 29 \ 11 \ 9 \ 24 \ 5 \ 19 \ 10 \ 3 \ 21$	G_2/s
$8 \ 22 \ 10 \ 19 \ 25 \ 12 \ 28 \ 20 \ 17 \ 21 \ 3 \ 11 \ 13 \ 7 \ 18 \ 14 \ 27 \ 2 \ 1 \ 26 \ 29 \ 9 \ 24 \ 15 \ 5 \ 6 \ 4 \ 23 \ 16$	G_2
$10\ 27\ 28\ 8\ 5\ 3\ 12\ 18\ 22\ 4\ 23\ 15\ 20\ 13\ 29\ 19\ 2\ 1\ 21\ 24\ 26\ 17\ 11\ 7\ 25\ 6\ 14\ 9\ 16$	W_2

TABLE 2. The lexicographically minimal polymorphs of Costas permutations of order 29, shown along with the method producing them. A "/s" indicates the EC is symmetric.

Nadav Levanon, Tel-Aviv University

LECTURE L SLIDE 26

Nadav Levanon, Tel-Aviv University

Tentative use of modified Costas waveforms in GESTRA radar

Maximum target range = 3000 km maximum range-rate = 7 km/s t_p = Pulse width = 0.0085 s (8.5 msec) $\therefore c t_p / 2 = 1275$ km

 $f_c = 1.33 \,\text{GHz}$, $BW = 2 \,\text{MHz}$ $t_p = 8.5 \,\text{msec}$ $M \approx 130 \Rightarrow \text{pulse compression} = M^2 = 16900$ Delay resolution $= \Delta R = ct_p / (2M^2) = 75 \text{m}$ Range-rate resolution $= \Delta \dot{R} = c / (2f_c t_p) = 13 \,\text{m/s}$

673

A Costas-Based Waveform for Local Range-Doppler Sidelobe Level Reduction

Fig. 1. The time-frequency coding concept of our waveform. After a pure Costas code (first half of the chips), we have an additional concatenated part containing the shifted positive (C1) and negative (C2) frequency parts. The maximum expected target Doppler frequency dictates the width f_{th} of the empty gray areas.

Nadav Levanon, Tel-Aviv University

Fig. 2. The DAF of our waveform for code length M = 12. The area A^c is

PHASE CODING, Code Comparison

- Bi-phase codes (bi-polar, binary)
 - easy to implement
 - can achieve significant range sidelobe reduction
 - thumbtack AF (Doppler intolerant)
- Poly-phase codes
 - typically higher range sidelobes than bi-phase
 - ridge-type AF (Doppler tolerant)

- Bi-phase:
- Barker
- MPSL

Poly-phase:

- Frank
- P3 and P4
- P(n,k)

$$u(t) = \frac{1}{\sqrt{Nt_b}} \sum_{n=0}^{N-1} u_n \left(t - nt_b \right)$$

$$u_n(t) = \begin{cases} \exp(j\phi_n); & 0 \le t \le t_b \\ 0; & \text{elsewhere} \end{cases}$$

Binary code

The phase of the RF carrier switches between two values 180° degrees apart. Can be describe by a sequence of $\pm 1'$ s

Barker codes: Magnitude of ACF sidelobes $\leq 1/N$

Length,	Barker Code	PSL	ISL
Ν		(dB)	(dB)
2	+ -	-6.0	-3.0
2	+ +	-6.0	-3.0
3	++-	-9.5	-6.5
4	+ + - +	-12.0	-6.0
4	+++-	-12.0	-6.0
5	+ + + - +	-14.0	-8.0
7	++++-	-16.9	-9.1
11	++++-	-20.8	-10.8
13	+++++++-+	-22.3	-11.5

Barker, 13 elements

b

		in Chat	1011-01	cyue	nce o	a De	arkerv	LUUE	or re	ngin			
{ <i>u</i> _n }	+	+	+			+	<u> </u>				· · · · · · · · · · · · · · · · · · ·		
$\{u_{N-n+1}^*\}$													<u> </u>
-				+	+	_	+						
+		+	+	+			+						
-			-	—		+	+	_	+				
				—	_	_	+ .	+	<u> </u>	+	•		
+					+	+	+		_	+			
+						+	+	+	-	_	+		
+							+	+	+	_	_	+	_
Output sequence	e —1	0	-1	0	-1	0	+7	0	-1	0	-1	0	-1

Table 8.3 The Autocorrelation Sequence of a Barker Code of Length 7

The Search For Longer Codes

- The limited number of chips associated with Barker phase codes has led to the search for longer codes in order to increase the pulse compression gain.
- Combining Barker codes is one example of extending the code length. For example,

4 Bit Barker: ++-+

Combined Code: ++-+ ++-+ ++-+ -+-+ ++-+

Autocorrelation function of the nested Barker 13 and Barker 3 code

SKEW-SYMMETRY

Skew symmetric means one of the interleaved halves of a code is symmetric, the other anti-symmetric. For example with the 13 bit Barker:

1111100110101 = 1110111 interleaved with 110100.

One of Golay's papers pointed out how for most lengths, at least up to perhaps length 70, the maximum merit factor is achieved with skew symmetric sequences.

SKEW-SYMMETRY – another view

Frank polyphase code

 $N = M^2$

Constructed from the rows of an *M*x*M* array:

$$\phi_{p,q} = \frac{2\pi}{M} (p-1)(q-1) , \quad p = 1, 2, ..., M , \quad q = 1, 2, ..., M$$

$$N = 16$$

$$0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1$$

$$0 \quad \frac{\pi}{2} \quad \pi \quad \frac{3\pi}{2} \quad 1 \quad j \quad -1 \quad -j \quad -j$$

$$0 \quad \pi \quad 2\pi \quad 3\pi \quad 1 \quad -1 \quad 1 \quad -1 \quad 1$$

$$0 \quad \frac{3\pi}{2} \quad 3\pi \quad \frac{9\pi}{2} \quad 1 \quad -j \quad -1 \quad j$$

$$\psi_{p,q} \qquad u_{p,q} = \exp(j\phi_{p,q})$$

Figure 8.7 The phase relationship between quantized linear FM and Frank coded signals. (Source: F. F. Kretschmer, Jr. and B. L. Lewis, "Polyphase Pulse Compression Waveforms," Naval Research Laboratory Report 8540, 1982.)

Nadav Levanon, Tel-Aviv University

Table 8.5 The Autocorrelation Sequence of a 16-Bit Frank Code

Frank, 16 elements

Frank codes exhibit perfect periodic autocorrelation

P3

P3 and P4 polyphase coding

$$\phi_m = \begin{cases} \frac{\pi}{M} (m-1)^2 ; & m = 1, 2, ..., M ; M \text{ even} \\ \\ \frac{\pi}{M} (m-1)m ; & m = 1, 2, ..., M ; M \text{ odd} \end{cases}$$

P4

$$\phi_m = \frac{\pi}{M} (m-1)^2 - \pi (m-1) ; \quad m = 1, 2, ..., M$$

Frank (*), P3 (+) and P4 (o) code

Nadav Levanon, Tel-Aviv University

NON-LINEAR FM

$$f(k) = \frac{k}{2M} \left[B_L + B_C \frac{1}{\sqrt{1 - \frac{k^2}{M^2}}} \right] \quad ; \quad k = -(M-1), \dots, -1, 0, 1, 2, \dots, (M-1) \quad \begin{array}{c} B_L = 0.55 \\ B_C = 0.18 \end{array}$$

P(n,k) code

- P4 is a phase-coded signal with discrete phases that are samples from the continuous phase of LFM.
- P(n,k) is a phase-coded signal with discrete phase that are samples from the continuous phase of NLFM.

Felhauer T.:"Design and analysis of new P(n,k) polyphase pulse compression codes", *IEEE Trans. Aerospace and Electronic Systems*, Vol.30 (3), July 1994, pp. 865-874.

Any frequency-modulated signal can be converted to a phase-coded waveform. Use: **u_phase = 2*cumsum(f_basic)**;

(P(n,k) code)

Polyphase Barker codes

Allowing any phase values (non-binary) can lead to lower sidelobes. However, the outer most sidelobe is always 1 (for any polyphase or binary code).

The *Polyphase* sequence with minimal peak-to-peak sidelobe ratio excluding the outer most sidelobe are called *generalized Barker* sequence or *Polyphase Barker*.

<u>Case 1</u>: Phases are restricted to values that are the k'th roots of unity (e.g. k=2 gives the original Barker codes or k=6 for sextic Barker codes).

<u>Case 2</u>: No restriction on the values to the k'th roots of unity. Examples of such sequences are now known for all $M \le 36$

Golomb, S. W. and Scholtz, R. A. "Generalized Barker sequences", IEEE Trans. on Information Theory, **IT-11**, (4), Apr. 1965, pp. 533-537. Bomer L. and Antweiler M. "Polyphase Barker sequences", Electronic Letters, **25**, (3), Nov. 1989, pp. 1577-1579.

Normalized form^{*} of known polyphase Barker codes

M	Peak sidelobe	Phase values [°]
4	0.5	104 313
5	0.77	73 225.3 90.6
6	1	58.2 175.9 354.1 234.2
7	0.522	106.4 93 316.7 60.5 270.7
8	0.662	72.1 28.6 294.3 151.7 251.2 63.3
9	0.430	38.7 41.5 270.2 215.1 40.5 160.7 334.3 [e1]
10	0.832	60.2 132.1 142.8 18.3 10.7 230.8 22.9 242.9
11	0.892	34.1 259 266.5 327.9 158.4 13.7 22.7 221.5 94.5
12	0.908	104.8 163 170.9 344.3 241 185.5 282.2 147.6 209 78.7
13	0.721	115.8 114.8 248.4 213.4 123.1 154.9 140.2 12.7 149.6 303.5 121.6
14	0.968	66.8 133.5 202.2 100.4 37.5 235.8 167.2 86 168.7 33.5 143.1 13.3
15	0.805	17.8 5.5 5.4 142.4 212 298.1 123.9 91.6 1.3 206 314.2 156.5 23.9
16	0.933	26.5 38.5 97.3 49.4 305.8 286.5 197 65.7 241.3 137.5 319.1 47.9 178.5 303
17	0.733	5.3 18.5 278.4 307.6 67.3 149 207.5 70.6 301.2 282.8 137.3 6.5 120.5 327.9 186
18		(?)
19	0.980	53.3 24.7 90 79.2 232.5 8 331.4 99 240 318.4 159.8 307.8 161.3 137.1 31.8 338.2 217
20	0.979	99.1 125.8 233.1 251.4 133.9 144 354.8 304.5 192.1 302.5 219.5 161.7 283.8 145.4 250.2 106.1 228.4 107

* Normalized form = The first two phase elements in each code are 0 and are excluded

22	0.995	23.8 53.7 82.1 74.5 349.3 265 314 247.2 147.2 74.6 285.7 160.2 335.4 78.5 317.2 148.4 248.6 344.3 87.8 208.7
23	0.912	7.4 276 286.4 253.9 256.7 351.7 58.4 60.2 226.3 353.1 100.5 168.6 41 208.5 347.8 219.2 125.9 349.7 315.3 182.1 56.3
24	0.997	5 316.4 257.1 216.5 202.4 319 311.1 356.9 296.8 111.2 36.1 280.8 136.9 10.1 115.7 259.2 134.3 268.0 28.0 142.3 208.4 333.8
25	0.936	81.9 65 316.3 273.1 326.3 339.8 62.7 18.8 270.5 198 98.8 126.6 206.5 350.7 105.9 270.8 295.4 162.3 334.2 155.5 339.8 147.7 4.4
26	0.879	51.3 117.1 138.2 265.4 267 175.4 117.8 260.2 200 136.1 154.2 179 75.8 341 187.4 307 194.4 92.5 190.2 17.2 110 250.3 38.7 199.7
27	0.985	10.6 21.9 28.7 324.7 308.4 280.6 118.4 99.2 112.2 284.5 200.6 313.8 116.3 326.7 184.8 53.4 8.8 193.9 97.1 240.9 335.3 103 228.6 332 93
28	0.950	46.9 84.3 166.3 145.7 199.8 105.1 116.6 58.7 109.7 325.9 24.3 189.9 21.4 196.2 58.8 326.5 129.2 259 306.7 123.5 111.2 312.7 298.5 173.8 97.9 327.8
29	0.871	6.9 318.2 239.9 264.7 239.2 160.4 301.5 327.5 18.7 319.7 84.9 108.6 224.1 6.3 31.4 184 167.8 89.9 325.2 227.5 145.4 329.9 91.6 263.7 94 252.9 59.6
30	0.998	33.1 34.6 33.7 11.9 300.1 281.5 26.5 54.2 155.6 211.9 231.6 134.4 76 317.7 275.8 67.6 299 184.6 72.6 153.8 6.6 262.6 94.1 242.8 359.1 149.7 306.4 71.5
31	0.935	28.4 117.7 165.1 236.5 308.7 305 236.5 216.4 327.4 279.5 211.3 247.2 192 95.4 17 273 52.8 331.1 224 303.7 147.2 21.7 245.6 29.3 145.5 297.1 62.4 190.8 7.8
32	0.996	13.5 16.5 90.5 110 95 60.5 333 307 289 281.5 85.5 164 248.5 335 171.5 76 64 221.5 298 110 37 272.5 179.5 19.5 179 288 82.5 292 133 329.5
33	0.990	143 153.5 339 332.5 180.5 133.5 19 108.5 166 216.5 225.5 227.5 318.5 238.5 184.5 226 141.5 113.5 75 36 185.5 327 226.5 108.5 302.5 116.5 273 350 188 356.5 164.5
34	0.997	11 1 307 245 200 184 231 293 300 348 45 227 247 57 335 1 127 249 68 91 315 221 57 116 238 58 287 127 273 127 5 216
35	0.999	93.2 65.4 166.4 132.4 344.1 279.4 337.6 301.3 197.6 56.2 36.8 9.2 325.8 334.3 24.4 157.8 291.1 301.1 148.4 112.9 141.3 296.6 128.7 125.4 341.4 129.9 244.6 73.8 321.5 157.6 300.7 107.5 254.4
36	0.969	82 118 228 228 58 60 154 108 20 234 212 262 236 196 220 116 12 226 178 122 126 76 266 114 256 108 320 100 266 30 124 246 60 186

The autocorrelation function of the 15-element polyphase Barker coded pulse

Polyphase Barker codes were found up to length 77 (Carroll J. Nunn and Gregory E. Coxson, private communication, 2008)

Nunn, C. J., and Coxson, G. E. :"Polyphase pulse compression codes with optimal peak and integrated sidelobes". *IEEE Trans. on AES.* **45**, 2, pp. 775-781, 2009.

TABLE IIIA New Polyphase Barkers TABLE IIIA New Polyphase Barkers

		Length	
i	65	66	67
3	0.669	0.651	0.250
4	0.705	1 094	-0.361
5	1.620	1.098	-1.531
6	2 788	0.760	-1 742
7	2.768	1 104	-1.742
· ·	-2.279	0.605	-1.451
0	-0.927	0.095	-1.171
10	-0.873	-0.258	-1.722
10	-1.549	0.559	5.150
11	-0.016	1.129	2.805
12	0.796	2.068	-2.514
13	-3.044	2.624	-1.989
14	-1.513	-2.402	-0.967
15	-0.131	-0.501	-0.748
16	1.590	-0.828	0.023
17	-3.074	-1.854	0.234
18	2.644	-0.840	-1.041
19	2.095	0.230	-2.578
20	-3.042	2.393	1.586
21	2.130	-3.060	0.326
22	1.384	1.131	1.287
23	-2.918	-0.166	0.641
24	-2.928	-1.944	-1.280
25	3.034	2.866	2.454
26	1.542	-2 745	1 149
27	0.033	-2 547	-1.694
20	2,000	-2.547	-1.094
20	-2.990	0.937	-2.947
29	-2.381	1.582	1.998
30	-1.370	-0.442	0.742
31	2.276	0.103	-1.043
32	1.634	1.712	-1.372
33	-0.725	-0.986	0.169

		Length	
i	65	66	67
34	-1.637	-1.787	2.094
35	-1.782	1.166	2.940
36	2.485	-1.647	-2.672
37	1.889	-1.843	0.929
38	-2.605	2.849	-0.487
39	1.191	2.671	-2.745
10	1.564	1.365	-2.633
41	1.478	-0.730	-0.853
12	0.231	0.377	0.507
13	-0.868	2.694	1.177
14	-2.381	2.546	-1.797
15	1.418	-0.056	1.766
16	-2.004	-0.933	-1.942
¥7	-2.523	3.130	2.306
18	2.127	0.163	-0.263
19	1.523	2.659	-3.031
50	-1.510	-2.094	-0.351
51	1.840	0.546	-3.107
52	-1.345	-1.692	-1.176
53	2.376	0.850	1.226
54	0.815	2.688	1.354
55	-2.078	-2.075	-2.455
56	0.387	1.289	-0.458
57	2.949	-1.056	2.348
58	-0.379	2.784	-2.290
59	2.532	0.931	0.382
50	-1.659	-2.703	-2.872
51	1.053	0.141	0.618
52	-2.749	-2.331	-2.105
53	0.520	0.424	0.139
54	-2.746	2.853	1.967
55	0.824	0.024	-2.217
56		-2.306	0.454

-3.091

TABLE IIIB New Polyphase Barkers

Nadav Levanon, Tel-Aviv University

TABLE IIIC

New Polyphase Barkers

		Length				Length	
i	68	69	70	i	72	76	77
3	0.4067	0.07976	1.42523	3	-0.1198	-0.2554	0.4842
4	-0.5046	0.58296	2.08816	4	-1.0806	-0.9594	1.3605
5	-2.1282	1.81485	-3.05258	6	-2.4183	-0.3549	1.3807
6	-2.0912	1.82098	-2.77191	7	2.8421	-0.021	0.6939
	-1.7483	1.00855	-2.45249	8	2.3423	-0.9241	0.7884
õ	1 7844	0.89233	-2.46227		2.1876	-1.5966	1.0706
10	2.0184	-0.1533	-0.37481	11	0.7354	-1.667	3.1198
11	1.5365	0.64288	0.13029	12	1.3757	3.0338	-2.9635
12	1.0150	0.69489	2.02962	13	1.6034	1.3757	-1.6182
13	1.0508	1.43504	2.1759	14	2.2493	-0.0373	-1.0878
14	2.2799	2.14618	-1.16998	15	2.5616	-2.5654	1.9737
15	2.6898	-2.20297	-0.38929	17	2.3693	1.6511	2.7293
17	1 7585	-0.50078	1 61698	18	-1.9032	1.1046	2.5286
18	1.6239	-1.0920	1.80808	19	-2.1234	1.0662	2.6055
19	1.9010	-1.69751	0.10839	21	-1.3015	-1.4643	1.1757
20	2.9506	-1.8551	0.3322	22	1.8598	0.6193	1.482
21	-2.5654	-2.67005	0.30113	23	0.878	0.7471	-1.444
22	-2.0949	2.01319	0.06233	24	-2.3613	2 7774	1 8144
23	-0.7560	1.26739	-1.16039	26	2.9272	0.8379	1.4187
25	0.0002	0.47052	-2.20334	27	-0.2282	1.3649	0.0879
26	1.9365	-0.75635	-2.41804	28	-1.751	2.8297	0.3141
27	0.4734	2.38315	2.01812	30	2.0505	-0.847	-1.6148
28	-2.6279	2.35055	0.66465	31	-2.4045	-1.8794	2.151
29	2.1562	-1.98574	-2.15192	32	-2.2363	1.97	1.4875
30	-0.0834	-0.85718	3.04328	33	-2.5211	-0.1631	-0.5051
31	-2.9324	-0.54268	0.13284	35	-0.5782	1 7583	-2.9933
33	-0.6224	2.65743	-2.66255	36	-1.1035	-1.5173	0.3578
34	2.7057	-1.48012	3.08902	37	-2.297	3.1287	1.0729
35	-0.4964	1.16378	0.38185	38	2.3064	-0.7578	-1.5457
36	2.1708	1.01598	-1.61902	40	-2.6224	0.7383	-0.1418
37	-1.1933	-1.5716	-2.00515	41	-1.8485	-0.3336	0.5553
38	2.1368	0.83961	-2.09872	42	-0.7337	0.2405	-2.3394
40	-2.3617	-2.18334	2.2047	43	1 5541	0.7288	-0.5124
41	-0.9185	-1.0478	-2.32013	45	-2.8166	3.1116	0.8723
42	2.4076	2.60719	0.27012	46	-2.3892	2.7773	-2.7094
43	-0.5770	1.49634	-1.40224	47	-0.5668	2.9883	-3.0903
44	1.1069	0.19691	-2.17547	49	3.0393	1.8147	0.5818
45	2.6485	-2.1478	2.10378	50	-0.6961	0.249	-2.3695
40	2 6271	-2.44301	-1.50729	51	2.3551	2.1562	-0.2644
48	-1.4287	0.36299	-1.32073	52	2.7485	-1.1582	-2.3454
49	0.7318	-1.58034	-1.99762	54	0.7501	-0.3944	1.7057
50	-2.2603	2.13499	2.40911	55	2.3623	-2.3461	-2.7964
51	2.0771	-0.94564	-0.34463	56	-2.0554	0.2543	0.8776
52	0.1169	-3.12196	2.85139	57	-0.3058	2.2108	-0.6545
53	-0.2964	0.90333	-1.25682	59	2.8183	2.7053	0.8063
55	-3.0375	1 50286	3 09061	60	-0.0986	-1.7175	-1.7238
56	1.5290	-2.97088	-1.54634	61	-2.9669	0.4087	2.6827
57	0.1530	-0.01951	0.14218	63	3.0655	-2.278	-2.5864
58	-0.9203	-1.64371	2.22836	64	-0.2771	2.9859	2.3057
59	2.6488	2.25934	-1.49084	65	2.5553	-0.3654	1.1339
60	-2.5165	-0.46549	-0.09963	66 67	-0.9381	2.3881	-1.7974
62	-0.4344	-1.4276	-1.00357	68	2.8031	0.4539	-0.1384
63	2.1702	1.22248	2.87771	69	-0.7153	1.6986	-2.5185
64	-1.5633	-1.93941	0.04429	70	2.4486	-2.2759	0.5594
65	-0.7039	1.07472	-2.79157	72	-0.7853	0.2246	-2.7806
66	2.1541	-2.80148	0.36066	73	1.0200	-2.527	-2.8669
67	2.8912	-0.28353	-2.43624	74	1	-0.5133	1.1971
68	-0.3947	2.33779	0.50735	75	1	2.0835	-1.0393
70		-0.91037	0.13762	77	1	-1.0578	-0.1159
			0.10702				

Table 3c. New Polyphase Barkers					
		Length			
i	72	76	77		
3	6.1636	6.0273	0.4845		
4	5.203	5.3227	1.3603		
5	4.3231	5.4145	1.4634		
6	3.8656	5.927	1.3801		
7	2.8431	6.2605	0.6927		
8	2.3432	5.3571	0.7873		
9	2.1885	4.6846	1.0692		
10	1.0976	5.0197	2.3891		
11	0.7366	4.6134	3.1182		
12	1.3775	3.0306	3.318		
13	1.605	1.3722	4.6628		
14	2.2512	6.2423	5.1933		
15	2.3499	5.1245	5.8162		
16	2.5639	3.7136	1.9713		
17	2.3717	1.6465	2.7264		
18	4.3827	1.0999	2.5257		
19	4.1626	1.0611	2.6028		
20	5.5839	5.013	2.2193		
21	4.9848	4.8132	1.1726		
22	1.8632	0.6133	1.4781		
23	0.8813	0.7407	4.8347		
24	5.9404	3.6666	6.2757		
25	3.9257	2.7707	1.8101		
26	2.9313	0.8308	1.4139		
27	6.059	1.3575	0.0833		
28	4.5366	2.8222	0.3092		
29	2.061	2.9552	4.0792		
30	0.4959	5.4279	4.663		
31	3.8837	4.3953	2.1457		
32	4.0518	1.9611	1.4822		
33	3.7674	6.1108	5.7726		
34	2.1039	4.3894	0.0605		
35	5.7103	1.7488	3.2839		
36	5.1852	4.756	0.3516		
37	3.9921	3.1185	1.0666		
38	2.3123	5.5148	4.7309		
- 39	1.6931	3.6565	3.7367		

	Table 3	c, continu	ed
		Length	
i	72	76	77
40	3.6673	0.7273	6.1345
41	4.4413	5.9382	0.548
42	5.5563	0.229	3.9365
43	2.4093	0.7167	3.5931
44	1.5612	0.3392	5.7626
45	3.4738	3.0991	0.8646
46	3.9016	2.7644	3.5653
47	5.7241	2.9753	3.1847
48	1.7437	4.5118	6.2139
49	3.0473	1.8011	0.5731
50	5.5952	0.2351	3.9051
51	2.3634	2.142	6.0098
52	2.7571	5.1105	3.9287
53	4.8559	4.2602	4.1518
54	0.759	5.8736	1.6961
55	2.3713	3.9217	3.4773
56	4.2369	0.2388	0.8679
57	2.2989	2.195	2.9094
58	5.9866	1.1635	5.6186
59	2.8279	2.6888	0.7961
60	6.1944	4.5489	4.5485
61	3.3262	0.3917	2.6713
62	0.8118	3.9877	5.7668
63	3.0756	6.1214	3.6855
64	6.0163	2.9683	2.2948
65	2.5658	5.8998	1.1224
66	5.3559	2.3697	4.4742
67	1.3892	5.1251	1.3498
68	2.8142	0.4349	6.1329
69	5.5791	1.6792	3.7521
70	2.4599	3.9875	0.547
71	5.5093	0.2047	3.4902
72	1.8405	2.2116	0.2968
73		3.7355	3.4031
74		5.749	1.1838
75		2.0624	5.2307
76		4.604	2.5273
77			6.1536

Nadav Levanon, Tel-Aviv University

Nunn, C. J., and Coxson, G. E. :**"Polyphase pulse compression codes with optimal peak and integrated sidelobes**". *IEEE Trans. on AES.* **45**, 2, pp. 775-781, 2009. Different phase codes that yield identical a-periodic autocorrelation function magnitude are called *equivalent*. It is easy to see, using properties of the crosscorrelation function, that the following operations on a phase code u_m give equivalent phase codes:

- -A reversal transformation: $\hat{u}_m = u_{M-m}$.
- -A conjugate transformation: $\hat{u}_m = u_m^*$.
- -A constant multiplication transformation: $\hat{u}_m = \eta u_m$ where $|\eta| = 1$.
- -A progressive multiplication transformation: $\hat{u}_m = \rho^m u_m$ where $|\rho| = 1$.

It is easy to show that every polyphase code is equivalent to one which begins { $\phi_1=0, \phi_2=0, \phi_3 \dots$ } where $0 \le \phi_3 \le \pi$. This form of the polyphase code is known as the *normalized form*.

Constant multiplication transformation: The crosscorrelation of sequences multiplied by a constant is the multiplied crosscorrelation of the original sequences

$$R_{\hat{u}\hat{v}}[k] = \sum_{m} \hat{u}_{m} \hat{v}_{m+k}^{*} = \sum_{m} \eta_{u} u_{m} \eta_{v}^{*} v_{m+k}^{*} = \eta_{u} \eta_{v}^{*} \sum_{m} u_{m} v_{m+k}^{*} = \eta_{u} \eta_{v}^{*} R_{uv}[k]$$

M	PSL	Sample code
6	2	110100
8	2	10010111
9	2	011010111
10	2	0101100111
12	2	100101110111
14	2	01010010000011
15	2	001100000101011
16	2	0110100001110111
17	2	00111011101001011
18	2	011001000011110101
19	2	1011011101110001111
20	2	01010001100000011011
21	2	101101011101110000011
22	3	0011100110110101011111
23	3	01110001111110101001001
24	3	011001001010111111100011
25	2	1001001010100000011100111
26	3	10001110000000101011011001
27	3	01001011011101110000111
28	2	100011110001000100100101101
29	3	10110010010101000000011100111
30	3	1000110001010010010000001111
31	3	010101001001001100000001111
32	3	0000000111100101010101011001100
33	3	011001100101010100101100001111111
34	3	1100110011111111100001101001010101
35	3	00000001111001011010101100110011
36	3	0011001100010100000100000111110

Minimum peak sidelobe codes (Barker codes are excluded)

37	3	0010101110100001001110110111110011110
38	3	00000001111000011010010101001100110
39	3	0010011001101000010111110111100111100
40	3	001000100010001111011100001110100101101
41	3	00011100011101010010100000001101100100
42	3	00010001000100011110111000011101001011010
43	3	0000000101101100101011001100111000011100
44	3	00001111111011001110110010110010101010111
45	3	0001010101111000011001100011011011011111
46	3	0000111100000011001111011101101100101010
47	3	00001101001101001111110100001010001100110001000
48	3	0001010101101011010000111100110010011111
49	4	000010010101010111101100011110011110010001101111
50	4	00001001011000011000111010101111000010011001101111
51	3	000111000111111100010001100100101010100100100101
52	4	0000100101000101101011100000111100110010010001101111
53	4	000010011001010101001111111100011010010
54	4	0000100110011010000101000000101001011001111
55	4	0000100110000100110101010000111100011001001001101111
56	4	0000100110011011101010101010101010001111
57	4	0000100100110100010101000111011010100010001111
58	4	00001000111100111001010100010111001001111
59	4	0000100100111010011100000010010100001010
60	4	0000101010111000110111110000110010010111001100100101
61	4	00000010110110100010011000100110001111001111
62	4	00000001011010110011001100011010010110000
63	4	00001001100111101011010001001000111000101
64	4	010000001001000010100010111010011110011000110010001101111
65	4	0000000101101110000001011000011011001101111
66	4	000000011010011011010001010100011100111001111
67	4	01000000101000001101100100110101010001111
68	4	0000000100111100100100111100011011000101
69	4	00010011011111101101100001001101000000111010
70	4	011010000100110011101001110001100001001

Coxson G. and Russo J. "Efficient exhaustive search for optimal-peak-sidelobe binary codes", IEEE 2004 Radar Conf., Philadelphia, pp. 438-443. Also *IEEE Trans. on AES*, **41**,1, (Jan. 2005), pp. 302-308.

Best-Known Autocorrelation Peak Sidelobe Levels for Binary Codes of Length 71 to 105

Carroll J. Nunn Gregory E. Coxson Technology Service Corporation Suite 800, 962 Wayne Avenue, Silver Spring, Maryland 20910

	Table 1	
Ν	Code	PSL
71	63383AB6B452ED93FE	4
72	E4CD5AF0D054433D82	4
73	1B66B26359C3E2BC00A	4
74	36DDBED681F98C70EAE	4
75	6399C983D03EFDB556D	4
76	DB69891118E2C2A1FA0	4
77	1961AE251DC950FDDBF4	4
78	328B457F0461E4ED7B73	4
79	76CF68F327438AC6FA80	4
80	CE43C8D986ED429F7D75	4
81	0E3C32FA1FEFD2519AB32	4
82	3CB25D380CE3B7765695F	4

Table 1 lists codes in hexadecimal, identifying 1 and -1 in the code by 1 and 0 in the hexadecimal representation. For lengths other than multiples of 4, zeros are added at the left side of the code before converting to hexadecimal.

	Table 2	
Ν	Code	- PSL
82	30861B7E64FC6C3729554	5
83	711763AE7DBB8482D3A5A	5
84	CE79CCCDB6003C1E95AAA	5
85	19900199463E51E8B4B574	5
86	3603FB659181A2A52A38C7	5
87	7F7184F04F4E5E4D9B56AA	5
88	D54A9326C2C686F86F3880	5
89	180E09434E1BBC44ACDAC8A	5
90	3326D87C3A91DA8AFA84211	5
91	77F80E632661C3459492A55	5
92	CC6181859D9244A5EAA87F0	5
93	187B2ECB802FB4F56BCCECE5	5
94	319D9676CAFEADD68825F878	5
95	69566B2ACCC8BC3CE0DE0005	5
96	CF963FD09B1381657A8A098E	5
97	1A843DC410898B2D3AE8FC362	5
98	30E05C18A1525596DCCE600DF	5
99	72E6DB6A75E6A9E81F0846777	5
100	DF490FFB1F8390A54E3CD9AAE	5
101	1A5048216CCF18F83E910DD4C5	5
102	2945A4F11CE44FF664850D182A	5
103	77FAAB2C6E065AC4BE18F274CB	5
104	E568ED4982F9660EBA2F611184	5
105	1C6387FF5DA4FA325C895958DC5	5

Ron Ferguson and Peter Borwein

Simon Fraser University, Canada

ronf@irmacs.sfu.ca ,pborwein@cecm.sfu.ca

PSL=5:

N = 106

345D52C1A9412871027F6CE6133 38034442C45CBE68943D2CE6B21 3B9D66D12077DEA98F9E96D08F8

N = 107

7B6A20356519F937CC7A753AC7C 6EAE32EB0537FCBEC4F1D8B12D4 F4947B5A3756777EBB3488E1F70 679C606EDE06A551BD836505049

N = 108

CC267AC7245F5C1E0481592B656 FDBB76F94097C56718CBCD49E8F F4947B5A3756777EBB3488E1F70

N = 113

1E90FC54B4E259765D3FF7628CDCE

PSL = 24:

N = 1112

FFEB761F4F18B489C76E27ACE89E7486183DA96FEFBA4FC9DA8D1A A1D638386EA2BBAD77515D87071AE1562C56E4FC977DFDA56F061 84B9E45CD791DB8E44B463CBE1BB5FAC020CCB61D151800C4DB69 4428B56599A837F5988BF5265F84AF80BE0D0DCF9CC4958C635246 73E76160FA03EA43F4C95FA2335FD82B334D5A28452DB646003151 70DA660802

EFF5BB0FA78C5A44E3B713D6744F3A430C1ED4B7F7DD27E4ED468 D50EB1C1C37515DD6BBA8AEC3838D70AB162B727E4BBEFED2B783 0C25CF22E6BC8EDC7225A31E5F0DDAFD6010665B0E8A8C00626DB 4A2145AB2CCD41BFACC45FA932FC257C05F0686E7CE624AC631A92 339F3B0B07D01F521FA64AFD119AFEC1599A6AD142296DB230018A 8B86D330401

Nadav Levanon, Tel-Aviv University

LECTURE L SLIDE 74

State of the art of the search for binary codes with good ACF

PSL	Length of longest known code, $N_{\rm max}$	$N_{ m max}/ m PSL$	PSL+16
1	13	13	
2	28	14	
3	51	17	19
4	82	20.5	20
5	113	22.6	21
6	140	23.3	22
7	167	23.9	23
8	202	25.2	24
10	259	25.9	26
24	1112	46.3	40
28	1559	55.7	44

Date: 29 Oct 2008 , From: "Ronald Ferguson" <ronf@univlora.edu.al>

For PSL=5, we have examples at lengths 106-109 and at 112, 113. For PSL=6, we have examples at lengths to 132 and at 134-137, 140. For PSL=7, we have examples at lengths to 161 and at 163-165, 167. For PSL=8, we have examples at lengths to 192, and at 194, 196, 198-200, 202.

Courtesy of Dr. Ronald Ferguson, University of Vlora, Albania (Previously with Simon Frazer University, Canada.)

LECTURE L SLIDE 77

BEST QUADRIPHASE CODES UP TO LENGTH 24

W. H. Mow

Indexing terms: Codes, Information theory

Quadriphase codes with minimum peak sidelobe magnitudes up to length 24 are found by the exhaustive search method. In particular, of these best quadriphase codes, all those achieving the maximum factor of merit are listed.

© IEE, 1993

18th March 1993

W. H. Mow (Department of Information Engineering, Chinese University of Hong Kong, Shatin, Hong Kong)

ELECTRONICS LETTERS 13th May 1993 Vol. 29 No. 10

2016 results by G.E. Coxson and J. C. Ruso

N	PSL	Optimal-PSL Code
2	1	00
3	1	002
4	1	0002; 0013
5	1	00020
6	$\sqrt{2}$	000132; 000201 ; 001023; 001203
		001303; 002010; 002121
7	1	0002202
8	$\sqrt{2}$	00103120
9	$\sqrt{2}$	000021302
10	$\sqrt{2}$	0001023113
11	1	00022202202
12	$\sqrt{2}$	000120032021
13	1	0000022002020
14	$\sqrt{2}$	00000220020201
15	1	000110331231020
16	$\sqrt{2}$	0000110331231020
17	$\sqrt{2}$	00000123020203210;
	• -	00221330131011010
18	2	000001230131310321;
		000002022020002200;
		000022220202200220;
		001220320033323130;
		002200221210101212
19	2	0000120003231321020;
		0001121003203231202;
		0013330231320333100
20	2	00000200220202002220;
		00010202122100201200;
		00102021222012022100
21	2	001012132012310221100
22	2	0001113311030232131131
23	2	00123023121212132032100
24	2	001023303213312303320100
25	2	0220220202022222200022000
26	$\sqrt{5}$	00001013121033102133022311

Table II. Optimal PSL and representative optimal-PSL quadphase codes for lengths $2 \le N \le 26$.

Nadav Levanon, Tel-Aviv University

Exhaustive Search for Optimal-PSL Quad-Phase

Codes IEEE Radar Conf., Oklahoma, 2018 Gregory E. Coxson

United States Naval Academy, Annapolis, MD

Jon C. Russo

Lockheed Martin Advanced Technology Laboratories, Cherry Hill, NJ

U		
27	$\sqrt{5}$	001330133202113032123233030
28	2	000222200020002000200202022022
29	$\sqrt{5}$	00102121330130330130332012100
30	$\sqrt{5}$	00001000022231031312133113
		0220
31	$\sqrt{5}$	000111133211221012001302131
		0313
32	$\sqrt{5}$	0000022222012232113321313213
		1202
33	$\sqrt{5}$	00001102332311332102130023201
		3100

Improving spectrum efficiency

(Spectrum sidelobe reduction)

Example: Barker 13

Approaches:

- Derivative phase
- Biphase to qudriphase transformation
- Replacing the rectangular bit with a "Gaussian windowed sinc" bit

Nadav Levanon, Tel-Aviv University

Nadav Levanon, Tel-Aviv University

Nadav Levanon, Tel-Aviv University

Biphase to qudriphase transformation

 $u(t) = a(t) \exp[j\phi(t)]$

$$\phi(kt_{b}) = \begin{cases} 0 & , \quad k = 0 \\ s(k-1)\pi/2 + \theta_{k} & , \quad k = 1, \dots, M \\ 0 & , \quad k = M+1 \end{cases} \qquad a(t) = \begin{cases} A\sin(2\pi t/4t_{b}) & , \quad 0 \le t \le t_{b} \\ A & , \quad t_{b} \le t \le Mt_{b} \\ A\cos[2\pi(t-Mt_{b})/4t_{b}] & , \quad Mt_{b} \le t \le (M+1)t_{b} \end{cases}$$

Biphase-to-qudriphase transformation (s=+1) of Barker 13 sequence

k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
θ_k		0	0	0	0	0	π	π	0	0	π	0	π	0	
$\phi_k \mod 2\pi$	0	0	π/2	π	3π/2	2π	3π/2	2π	3π/2	2π	3π/2	π	π/2	0	0

Taylor, J.W., and Blinchikoff, H.J. "Quadriphase code: a radar pulse compression signal with unique characteristics", *IEEE Trans. on Aerospace and Electronic Systems*, 24, (2), March 1988, pp. 156-170

Qudriphase transformation of Barker 13

Qudriphase transformation of Barker 13

LECTURE L SLIDE 88

Chen, R., and Cantrell, B., "Highly bandlimited radar signals", 2002 IEEE Radar Conf., Long Beach CA, April 2002, pp. 220-226.

18

8

Barker 13 – using Gaussian windowed sinc

Barker 13 – using Gaussian windowed sinc

Barker 13 - Quadriphase

Barker 13 – Gaussian windowed sinc bit

periodic autocorrelation

	+	+	—	+	+	—	+	+	—	+
-	-	-	+	_	-	+	-	—	+	-
+		+	+	_	+	+	-	+	+	-
+			+	+	—	+	+	—	+	+
Σ			+3	-1	-1	+3	-1	-1	+3	-1

periodic autocorrelation

Ideal correlation

	+	+	—	+	+	-	+	+	—	+
0	0	0	0	0	0	0	0	0	0	0
+		+	+	_	+	+	_	+	+	_
+			+	+	_	+	+	-	+	+
Σ		l	+2	0	0	+2	0	0	+2	0
Perfect correlation										

periodic cross-correlation

+ 0 + + 0

	+	+	U	+	+	U	+	+	U	+
_	_	_	0	_	_	0	_	_	0	_
+		+	+	0	+	+	0	+	+	0
+			+	+	0	+	+	0	+	+
Σ		1	+2	0	0	+2	0	0	+2	0
		· · · ·		\neg						

Switching the roles of signal and reference

Perfect correlation