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http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471473782,subjectCd-EE29.html
http://www.amazon.com/gp/reader/089006900X/ref=sib_dp_pt/102-8429790-8339345#reader-link
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Basic Radar Functions

• Detection

– determine if observed signal represents noise only, or

noise plus the echo of a transmitted signal

• implies reflection off an object

• Tracking

– measure and track the location and velocity of a detected object

• Imaging

– form a 2- D or 3- D image of an area or a volume

RAdio Detection And Ranging
or

(RAdio Direction And Range)

רחקמיוון וכגלה מ
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From M.A. Richards, Georgia Tech
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From M.A. Richards, Georgia Tech
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From M.A. Richards, Georgia Tech

IFSAR of University 
of Michigan Stadium

Collected with 
ERIM/DARPA/TEC 
IFSARE system
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Low-cost civil marine radar (~1500 US$)
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Ships facing the port of AshdodIntensity on Range/Azimuth Map
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Intensity on Range/Range-Rate Map

Cars receding in an alley in Bnei-Brak

?
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RADAR HISTORY

Germany

Christian Hulsmeyer – 1904 (Radar)

Hans E. Hollmann – 1925 (Magnetron)

England
Robert Watson-Watt - 1937 (Chain Home radar)

John Randall & Harry Boot – 1940 (High power magnetron)

USA
Albert Hoyt Taylor  - 1922 (NRL, Bi-static radar)

Robert W. Page - 1937 (NRL, Naval radar, CXAM)

Italy
Guglielmo Marconi - 1934
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http://ieee-aess.org/sites/ieee-

aess.org/files/documents/paper_v4.pdf

The German radar patent
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The British patent
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Hans E. Hollmann - In 1928 Hollmann 
started a company called GEMA. GEMA 
built the first radar in the autumn of 1934 
for naval use. It used a 50cm wave-length 
and could find ships up to 10 km away. By 
1935, they had developed the technology 
into two applications. For naval use, the 
"Seetakt" system used a wavelength of 80 
cm. A land based version at 120 cm 
wavelength was also developed as "Freya".

http://en.wikipedia.org/wiki/Seetakt_radar
http://en.wikipedia.org/wiki/Freya_radar
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Telefunken set up a radar 
business in 1933 based on 
Hollmann's work and 
developed a much shorter-
range gun-laying system 
called "Würzburg." During 
World War II, Freya and 
Würzburg worked in pairs. 
Freya would spot the 
incoming aircraft while the 
Würzburg calculated the 
distance and height.

http://en.wikipedia.org/wiki/W%C3%BCrzburg_radar
http://en.wikipedia.org/wiki/World_War_II
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The German military considered the Magnetron’s frequency drift to be undesirable and 
based their radar systems on the klystron instead. It was primarily for this reason that 
German night fighter radars were not a match for their British counterparts. 

http://en.wikipedia.org/wiki/Night_fighter
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In 1940, at the University of Birmingham in the UK, John Randall and Dr. Harry 
Boot produced a working prototype similar to Hollman's cavity magnetron, but 
added liquid cooling and a stronger cavity. Randall and Boot soon managed to 
increase its power output 100 fold. Instead of giving up on the magnetron due to 
its frequency inaccuracy, they sampled the output signal and synced their 
receiver to whatever frequency was actually being generated.

Sir John Randall
1905-1984

Sir Harry Boot
1917- 1983

http://en.wikipedia.org/wiki/University_of_Birmingham
http://en.wikipedia.org/wiki/United_Kingdom
http://en.wikipedia.org/wiki/Sir_John_Randall
http://en.wikipedia.org/wiki/Harry_Boot
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The British Chain Home radar. The transmit antennas are suspended between the towers 
on the right; the receive antennas are on the four wooden towers on the left, with each 
tower initially operating on a separate frequency (MIT radar course).
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Transmitting antenna

Robert Watson-Watt
1892- 1973 

Receiving antenna
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Obtaining good elevation resolution on-receive using multipath from two different antenna heights

h
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CHAIN HOME RADAR

PROTOTYPE

OPERATIONAL
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Klein Heidelberg (passive bi-
static German radar) 
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Ground wave propagation over sea water (ITU report)
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http://www.cdvandt.org/K-H-LB13-40 K-H-Ellipse-26-low.jpg
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The Athenaeum
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“Tizard carried a black leather suitcase which contained nearly all the important new English 
war devices – and, of a different order of importance from the rest, the new cavity 
magnetron - ‘The most valuable cargo ever brought to our shores’ ”.

“Tizard mission, on which John Cockcroft was his second in command, was one of the 
successes of both their lives. American scientists, both at the time and since, have spoken 
with extreme generosity, of the effect that visit made. It is true that, mainly because the 
English had been forced to think in order to survive at all, in most military scientific fields 
they were ahead. This was preeminently true of radar. Although English, American, and 
German scientists had all begun developing radar at about the same time, by 1940 the 
English had carried it further”

C.P. Snow “Science and Government”, Harvard University Press, 1961 

The Tizard mission to the US and Canada
(September 1940)

Sir Henry Tizard (Mission Leader) 
Brigadier F.C. Wallace (Army) 
Captain H.W. Faulkner (Navy) 
Group Captain F.L. Pearce (RAF) 
Professor John Cockcroft (Army Research) 
Dr. E.G. Bowen (Radar) 
A.E. Woodward Nutt (Secretary) 

Sir Henry Tizard

Henry Tizard headed the Committee for the 
Scientific Study of Air Defence, 1935-1940
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1936 Nobel, Physics

Harvard president1927 Nobel, Physics 

MIT president

L-R: Ernest O. Lawrence, Arthur H. Compton, Vannevar Bush, 
James B. Conant, Karl T. Compton, Alfred L. Loomis.

Vannevar Bush, MIT EE Prof.,

Head - Nat’l Res. Defense 
Committee. His students: Claude 
Shannon, Fredric Terman

Alfred Lee Loomis  
1887-1975

An American attorney, 
investment banker and patron 
of scientific research. 
Played a key roll in establishing 
the Radiation Lab at MIT.
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In October 18, 1940 the Radiation Laboratory at the Massachusetts Institute of 
Technology with Lee A. DuBridge as its technical director was set up with the 
prime purpose of developing radar for the war effort. It had three primary goals:
1. Develop a 10 cm Aircraft Interception (AI) radar.
2. Develop a gun laying radar.
3. Aircraft navigation. In March 1941, a 10 cm radar was tested on a B-18 
bomber.
In its 6 years of existence, over 2.1 billion dollars were spent on the development 
of radar. This was about as much as was spent on the development of the atom 
bomb 

In 1943 the Rad Lab established a British 
Branch (BBRL), which created a direct 
channel between the lab and the 
European Theater. Trump became the 
head of BBRL in February 1944. By 
November he had begun shuttling back 
and forth between Great Britain and 
forward military positions on the 
continent, serving a dual role with BBRL 
and with Bowles’s contingent working for 
the US Army Air Forces in Europe.

Lee DuBridge, director of MIT Radiation Lab (left) 
and John Trump, in Paris during WW II.
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In the autumn of 1922, Albert H. Taylor and  Leo C. Young of the U.S. 
Naval Research Laboratory (NRL) were conducting communication 
experiments when they noticed that a wooden ship in the Potomac River
was interfering with their signals; in effect, they had demonstrated the 
first continuous wave (CW) interference radar with separated 
transmitting and receiving antennas. In June, 1930, Lawrence A. Hyland
of the NRL in the U.S. detected an airplane with this type of radar 
operating on 33 MHz.

Taylor instructed an assistant, Robert M. Page to construct a working 
prototype - a problem solved by 1934. By 1937 his team had developed 
a practical shipboard radar that became known as CXAM radar - a 
technology very similar to that of Britain's Chain Home radar system.

Robert M. Page  1903-1992  
Was central to the development of US 
Naval Radar systems which were 
completed prior to World War II. His 
successful demonstration of pulse 
radar was critical to the funding which 
made rapid development of the naval 

radar systems possible.
Albert Hoyt Taylor

1879-1961

http://en.wikipedia.org/wiki/Albert_H._Taylor
http://en.wikipedia.org/wiki/U.S._Naval_Research_Laboratory
http://en.wikipedia.org/wiki/Wooden
http://en.wikipedia.org/wiki/Potomac_River
http://en.wikipedia.org/wiki/Continuous_wave
http://en.wikipedia.org/wiki/Lawrence_A._Hyland
http://en.wikipedia.org/wiki/Fixed-wing_aircraft
http://en.wikipedia.org/wiki/CXAM_radar
http://en.wikipedia.org/wiki/Chain_Home
http://en.wikipedia.org/w/index.php?title=Leo_C._Young&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Robert_W._Page&action=edit&redlink=1
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SCR-271 3 m air warning radar at New 
Caledonia in May 1943. The SCR-271 
was an early version of the SRC-270. 

The United States Army Signal Corps started developing radar as early as 1930. In 1935, 
tests on microwave propagation using Hollmann built valves, RCA magnetron operating at 9 
cm, RCA acorn valves were performed. In 1937 the test radar unit was demonstrated. Based 
on this test unit, in 1940, the SCR-270 became available for coastal defense and it was first 
deployed in Panama in the Fall of 1940 as an early warning for the Air Corps, Pursuit 
Squadron. This unit operated on a frequency of 205 MHz (l=1.5 m) and had a range of 23 
miles, had an angular accuracy of 1 deg. 18 units were built by the Army Signal Corps 
Laboratory for training purposes. By June of 1941 a total of 85 sets had been delivered by 
Western Electric. A total of 794 were produced between 1939 and 1944.
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In 1922 Marconi foretold the discovery of radar in a lecture at the 
American Institute of Radio Engineers in New York. 

In Italy in 1935 he gave a practical demonstration of radar.

Guglielmo Marconi
Nobel prize, 1909

Princess Elletra Marconi
(Guglielmo’s daughter) speaking at 
RADAR 2008 Conference in Rome
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TRANSMITTER

RECEIVER
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pCR
2
1

Range Delay

Velocity of 
propagation

2-way

Range  Delay
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Velocity  Doppler shift



R
fD


2

Range rate

Wavelength

Doppler shift

2-way

0f

Cp


Velocity of 
propagation

Carrier frequency
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Comments on implementation of delay and frequency measurement
(Covered in details in the lecture on “Radar Measurements” and in Ch. 13 of “Radar – Concise Course”)

• Delay measurement – Involves detecting the instant when the returning pulse arrives.

(A relatively simple and instant measurement).   

• Frequency measurement – Not instant. Requires time duration to perform. Frequency 
estimation accuracy improves with measurement duration and signal-to-noise ratio. 
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Salzburg, Austria
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Two assumptions were made:

v << Cp     (assumption valid in EM propagation, not necessarily in acoustics or sonar)

Narrow band signal - All the frequencies of the signal are almost equal to f0 , 

Hence, all the frequencies are shifted by the same fD .
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From M.A. Richards, Georgia Tech



For a 
monostatic 
radar the 
Doppler 
shift is 
determined 
by the radial 
component 
of the 
velocity 
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cosr v  

All the target’s velocity 

vectors (red lines) have the 

same range-rate toward the 

radar.
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From M.A. Richards, Georgia Tech
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From M.A. Richards, Georgia Tech
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Iso-range and iso-Doppler contours in bi-static scene (2-D)Bi-static scene (2-D)

 target trans target rec

trans rec

1
Iso-range contour value

2

baseline :

R R b

b R

 



  



(Passive radar is a special case of Bi-static radar)
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Iso-range and iso-Doppler 
contours in a bi-static scene (2-D)
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RADAR EQUATION

G,A

R

24 R

GPT




 24 R

GPT

 224 R

GPT







 
A

R

GP
P T

R 224








4

2G
A 

 





43

22

4 R

GP
P T

R 



Nadav Levanon, Tel-Aviv UniversityRadar Principles - extended

62LECTURE A  SLIDE

Radar cross section of a target - 

 =    The area of a virtual target which reflects back isotropically,

that would have caused the same return as the actual target.

Dimension of  is m2 (i.e., area)
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4

2 2
Power ratio[dB] 10log 20logt tr t tr

t tr t rec t rec

R R

R R R

 

  

 

Bistatic radar equation



Nadav Levanon, Tel-Aviv UniversityRadar Principles - extended

64LECTURE A  SLIDE





4

2G
A Antenna aperture   antenna gain

P

P’

P’’





D

rad1,sin"'   DDPP
1

2
"' PPWhen                the radiation from P and P’ 

are out of phase and cancel. Approximate:

 


 





elsewhere0

10

21




 

G
G

D



Nadav Levanon, Tel-Aviv UniversityRadar Principles - extended

65LECTURE A  SLIDE

R
DT DR

1
TD

RR  12

   

2 2 2

2 2

R R R T

T T

P D D D

P R D R 
 

2 4A
D




   222
62.1

16

 R

AA

R

AA

P

P TRTR

T

R 

1.62 caused by the approximations. 
True value = 1

 2
R

AA

P

P TR

T

R 

From the radar equation development, the power 

received (and reflected) by a target of area AR= is: 24 R

GA

P

P TR

T

R








4

2

T
T

G
A 

1 2 TD
 



Nadav Levanon, Tel-Aviv UniversityRadar Principles - extended

66LECTURE A  SLIDE

From M.A. Richards, Georgia Tech
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From M.A. Richards, Georgia Tech



Nadav Levanon, Tel-Aviv UniversityRadar Principles - extended

68LECTURE A  SLIDE

From M.A. Richards, Georgia Tech

RCS of a Conducting Sphere

• Three regions, depending on relative size of sphere 

and wavelength

• For radius a >> 

• Aspect and frequency independence makes it a 

good calibration target

2a 
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From M.A. Richards, Georgia Tech
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From M.A. Richards, Georgia Tech
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An elementary radar block diagram showing composition of the four principal subsystems
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From M.A. Richards, Georgia Tech
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From M.A. Richards, Georgia Tech

  
      

 
 

 
   

  
     

m m

10m m dB km dB km dB km km
dB

km dB km km
dB

10log 10 2 2
5000 1000

2

a a

a

R R
L R L R R

L R R

  



    
 


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Propagation Losses
O

n
e
-w

a
y
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From M.A. Richards, Georgia Tech
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Lamont V. Blake: “Radar Range Performance Analysis “
D. C. Heath 1980 (Artech House, 1986)

David K. Barton:  “Radar Systems Analysis and Modeling ”
Artech House, 2004
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From M.A. Richards, Georgia Tech
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Uniform Current Distribution Antenna

Simplest case

+Dz /2

-Dz /2

x

y

z



E 


 

 
 

 

sin sin

sin

z

z

D
E

D

  


  

  
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From M.A. Richards, Georgia Tech

Number of square degrees in 
a sphere: 4(180/)2= 41253

Typical ant. Efficiency= 0.5

41253*0.5  20000

0
0

2

2 0

360 180
2 , 360

2 2

180
4 , 4 41253

circle

sphere sphere

l
l r l r

s r s


  

 


     

 
   

 
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From M.A. Richards, Georgia Tech
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Un-ambiguous range and Eclipsing

CTr /2

Near

clutter

Trans.
pulse Near

clutter

Eclipsed by pulse

Masked by near clutter

Range

Delay
Tr 2Tr

CTr

0

Intensity

un-ambiguous 
range
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SNR version of the radar equation

(Will be demonstrated on a coherent pulse train, but true for all coherent signals)

cf

1

tp

Rf
Tr

1


Coherence = Known phase
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Example of non-coherent magnetron pulses

ITT-Gilfillan

GCA – Mark 5
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p

B
t

f
1



 Signal power pass through BPF

  B

T
p

fNR

GP
SNR

0

43

22

4




SNRp = for a single pulse

SNR = for integration time

TI = Coherent integration interval

= Coherent Processing Interval (CPI)

M = number of pulses in TI 

RI
I fT

T

T
M 

pSNRMSNR 

IB

TpT

Tf
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P ave
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G
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




BPF Synchronous
detector
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I

Q

|H(f )|
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-fc
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(N0/2)
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Q
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
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  B

T
p

fNR

GP
SNR

0

43

22

4




pt=3;% transmitted power in W

g=50; % antenna gain

rcs=100; % target RCS in square meters

fc=3e9; % carrier frequency in Hz

c= 3e8; % velocity of propagation in m/s

k= 1.38e-23; % Boltzman coeff in Watt*sec/degK

te=300; % effective temperature in Kelvin =273+27

f=1.6; % noise figure (good LNA)

tp=2e-6; % pulse width in sec

fb=1/tp; % receiver bandwidth (one sided)

lambda=c/fc;

n0=f*k*te;

r=1000:100:5000;

snr=pt * g^2 * lambda^2 * rcs / ((4*pi)^3 * n0 * fb) 

*r.^-4;

snrdb=10*log10(snr);

figure(1)

plot(r/1000,snrdb,'k', 'linewidth',2)

xlabel(' Range [km] ')

ylabel(' SNR [dB] ')

grid on

 

0

0

Watt sec / K

K

Receiver's noise figure

Boltzman coefficient = 1.38E-23 

Effective temperature 

 - 

 -  

 - e
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pt=3;% transmitted power in W

g=50; % antenna gain

fc=3e9; % carrier frequency in Hz

f=1.6; % noise figure (good LNA)

tp=2e-6; % pulse width in secRecorded reflection from a jetliner approaching Ben-Gurion airport 

Intensity on Range/Time Map
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SNR determines the detection probability

SNR determines the accuracy of measurement (range, velocity, angle)

The noise in the expression of SNR was thermal noise

SNthermalR can be improved by increasing the transmitted power 

Returns from ground or 
sea are also “noise” and 
can undermine detection 
or measurements

SClutterR can be 
improved by decreasing 
range, Doppler and/or 
azimuth resolution 

  0

ave

43

22

4 N

TP

R

G
SNR I





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Basic Topics

The nature of the target: RCS, RCS statistics, location, motion.

The competition (background): Multipath, ground reflection (clutter), noise.

Clutter: Normalized RCS, angular dependence, statistics.

Selecting (defining) a cell location in the 4-D space: Azimuth, elevation, range, 

range-rate , or in the 6-D space: 

Minimizing the cell size: In order to minimize the competition (From: clutter, 

other targets, noise).

Minimizing ambiguities:  Preventing returns from other cells to add erroneously 

to the return in the desired cell.

Detection: Declare if there is a target in the defined cell, with high probability of 

detection        and low probability of false alarm       .

Improving the detection performances using integration (coherent or non-

coherent) of returns from many pulses, using possible motion of the target or the 

radar, using reference neighbor cells to define an adaptive detection 

threshold.

 , , , , ,x y z x y z

DP FAP
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Antenna

Transmitted waveform &

Receiver processor

Defines cells in

the 4-D space:

Azimuth

Elevation

Range

Range-rate 
Target

CUT

Range-rate

A range, range-rate array in a given azimuth-elevation cell

R
a
n

g
e

Detection

Specifications: PFA

Outcome: PD

Noise, clutter

MTI

MTI

Cars

MTI



Nadav Levanon, Tel-Aviv UniversityRadar Principles - extended

94LECTURE A  SLIDE

Electromagnetic propagation in the Earth atmosphere

n

C
C p 

C = Speed of light in vacuum = 2.997925x108 m/s 3x108 m/s

n = refractive index   6101 nN











T

e
P

T
N 4810

6.77

T - air temperature in oK

P - air pressure in milibar

e - water vapor presure in milibar
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Refraction index as function of height for standard atmosphere

H [km] N Ns-[h/(4a)]106

0 319 = Ns 319

1 277 279

3 216 201

10 92 -

20 20 -

50 0.2 -

 

a = Earth radius = 6370 km



km5,
4

)(  h
a

h
nhn s

 

610

6

1

101

Nn

nN


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n = 1

n > 1
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a
a

h
s



ns

n

   coscos hanan ss Snell’s law in polar coordinates:
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If we assume an Earth radius of         

we can ignore the change in n with 

height, i.e., ignore refractivity.

a
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 

2 2

21

2 2 2 4
3

2 2 4
3

4
3

4
3

cos 4
1

cos 4 4

4 4
1

4 4 4

4 3 3 3 4 3
1 1

4 4 4 4 4

cos

cos

s

s

s

s s s

n

h a

s

h
a h n

a h h a h a h ha

a n a an a a an

a h a h h a h h a ah ah h

a a a a a a

a ha ah h h h h a h

a a a a a a

a

a h













 
            

 

      
     

 

  
       





