
Implementing Orthogonal Binary Overlay on a Pulse
Train using Frequency Modulation

As reported recently, overlaying orthogonal phase coding on

any coherent train of identical radar pulses, removes most of the

autocorrelation near sidelobes and lowers the recurrent lobes.

The present work shows that both properties are maintained

when a binary orthogonal overlay is replaced by its “derivative

phase” (DP) frequency modulation (FM) equivalent. Frequency

modulated overlay is more spectrum efficient and would be easier

to implement when the original pulses are already frequency

modulated.

I. INTRODUCTION

Achieving Doppler resolution in radar usually
requires a coherent train of P pulses. In most cases
the train is constructed by repeating the same
compressed pulse. It was recently reported [1—3] that
overlaying the P identical pulses with an orthogonal
set of P sequences, each one constructed of M
elements, will remove completely the sidelobes of the
autocorrelation function (ACF) over the delay range
ts · ¿ · T, where ts is the duration of one element
of the sequence, which is referred to as a slice, and
T =Mts is the pulse duration. In [1], [2] and [3]
the orthogonal set was implemented using phase
modulation. The penalty for adding phase modulation
is spectrum broadening, typical of conventional phase
coding. One method to reduce the spectral width
of phase coded radar signals, while maintaining
constant envelope, is the “derivative phase (DP)
modulation” [4, 5]. We apply this method, instead of
the phase-coded orthogonal overlay, and check the
resulting ACF and spectrum.
Subsections A and B of the introduction briefly

describe the orthogonal overlay concept and the
derivative phase (DP) method. In the following
sections examples are given of using DP overlay on
four different pulse compression signals.

A. Orthogonal Overlay

In [1], [2], and [3] the orthogonal set was
implemented using phase modulation. An example
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of a P-by-M binary orthogonal set, where P =M = 8,
can be described starting with the phase matrix

'= f'p,mg= ¼

2666666666666664

0 0 0 0 0 0 0 0

0 0 1 1 1 1 0 0

0 1 1 0 0 1 1 0

0 0 0 0 1 1 1 1

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 1 0 1 1 0 1 0

0 1 1 0 1 0 0 1

3777777777777775
: (1)

The actual orthogonal set is given by the matrix

A= fap,mg= fexp(j'p,m)g: (2)

Clearly, the elements of A get only two values:
+1 and ¡1. Polyphase orthogonal sets were also
described in [1], [2], and [3] but they are not relevant
to the present paper. Recall that the matrix A is said to
be orthogonal when the dot product between any two
columns of A is zero, implying that the matrix ATA is
diagonal. Note also that orthogonal P-by-M matrices
A exist only for M · P. The overlay is implemented
by phase modulating the pth pulse by the pth row
of A.
One problem caused by adding a binary

phase-coded overlay, is the broadening of the
spectrum. An example is given using a train of
8 constant frequency (i.e., unmodulated) pulses,
with and without binary overlay. The relationships
between the slice width ts, the pulsewidth T, the pulse
repetition interval Tr and the total signal duration PTr
are

T =Mts = 8ts

Tr = 2:5T = 20ts

PTr = 8Tr = 160ts:

The large duty cycle (T=Tr = 0:4) was selected in
order to simplify the drawings. Fig. 1 presents
the well-known ACF and magnitude spectrum
of a coherent train of 8 unmodulated pulses. The
spectrum’s first local null is at fPTr = 1, with a
major null at f = 1=T, namely at fPTr = 20. Adding
binary phase modulation with a slice width equal
to ts = T=8 should broaden the spectrum by a factor
of 8. Thus the first null is found at fPTr = 160 (see
Fig. 2, middle subplot). Because of the instant phase
transition at slice boundary, the spectrum exhibits
an extended skirt, decaying at a rate of 6 dB/octave,
as seen in the bottom subplot of Fig. 2. Comparing
the autocorrelation (top subplots) in Figs. 1 and 2,
demonstrates how adding the orthogonal overlay
removed the near-sidelobes over ts · ¿ · T = 8ts, and
lowered the recurrent lobes around multiples of Tr,
namely multiples of 20ts.
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Fig. 1. ACF (top) and spectrum (bottom) of train of 8 constant frequency pulses (without overlay).

Fig. 2. ACF (top) and spectrum (middle and bottom) of train of 8 constant frequency pulses (with orthogonal phase-coded overlay).

B. Derivative Phase Modulation

DP modulation [4, 5] differs from conventional
binary phase modulation by replacing phase jumps
with phase slopes (frequency steps). The frequency
steps are so designed that at the end of the slice
duration ts the accumulated phase change is the
desired 0 or ¼. Zero phase accumulation is obtained
by splitting the slice into two bits ts = 2tb; during
the first bit the frequency step is ¢f = 1=4tb
yielding accumulated phase of 2¼¢ftb = ¼=2;
during the second bit the frequency step is ¡¢f
yielding accumulated phase of ¡¼=2; hence, zero

total phase accumulation during a slice. Phase
accumulation of ¼ (or ¡¼) is achieved by maintaining
the frequency step of ¡¢f during the entire
slice.
There are several variations to DP. In the one to

be used here the split slice, in which the frequency
modulation (FM) is f¢f,¡¢fg, is used in the first
slice of a sequence, and whenever the current slice is
identical to the previous slice. A f¡¢f,¡¢fg FM
is used when the current slice is different from the
previous slice. Equation (3) presents the FM matrix
corresponding to the orthogonal phase-coded matrix
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Fig. 3. Amplitude (top) and frequency (bottom) of train of 8 constant frequency pulses (with derivative phase overlay).

in (1)

F=¢f

2666666666666664

1 ¡1 1 ¡1 1 ¡1 1 ¡1 1 ¡1 1 ¡1 1 ¡1 1 ¡1
1 ¡1 1 ¡1 ¡1 ¡1 1 ¡1 1 ¡1 1 ¡1 ¡1 ¡1 1 ¡1
1 ¡1 ¡1 ¡1 1 ¡1 ¡1 ¡1 1 ¡1 ¡1 ¡1 1 ¡1 ¡1 ¡1
1 ¡1 1 ¡1 1 ¡1 1 ¡1 ¡1 ¡1 1 ¡1 1 ¡1 1 ¡1
1 ¡1 ¡1 ¡1 ¡1 ¡1 ¡1 ¡1 ¡1 ¡1 ¡1 ¡1 ¡1 ¡1 ¡1 ¡1
1 ¡1 1 ¡1 ¡1 ¡1 1 ¡1 ¡1 ¡1 1 ¡1 ¡1 ¡1 1 ¡1
1 ¡1 ¡1 ¡1 ¡1 ¡1 ¡1 ¡1 1 ¡1 ¡1 ¡1 ¡1 ¡1 ¡1 ¡1
1 ¡1 ¡1 ¡1 1 ¡1 ¡1 ¡1 ¡1 ¡1 ¡1 ¡1 1 ¡1 ¡1 ¡1

3777777777777775
: (3)

Note that there are 92 “¡1” in (3) and only 36
“+1”. This implies that the spectrum of the complex
envelope of the signal containing this type of overlay
will be shifted downward in frequency. This is
demonstrated in Fig. 5. Another FM matrix that
corresponds to the PONS [3, 6] orthogonal matrix
is given in (4). The frequency coding in (3) is
used henceforth, unless stated otherwise. The two
frequency coding overlays yield exactly the same
ACF over the delay span j¿ j · T, but the ambiguity
functions over that span differ at non-zero Doppler
shifts. The recurrent lobes of the ACFs are also
affected by the specific frequency coding overlay

F=¢f

2666666666666664

1 ¡1 1 ¡1 1 ¡1 ¡1 ¡1 ¡1 ¡1 1 ¡1 ¡1 ¡1 ¡1 ¡1
1 ¡1 1 ¡1 1 ¡1 ¡1 ¡1 1 ¡1 1 ¡1 ¡1 ¡1 ¡1 ¡1
1 ¡1 1 ¡1 ¡1 ¡1 ¡1 ¡1 1 ¡1 1 ¡1 1 ¡1 ¡1 ¡1
1 ¡1 1 ¡1 ¡1 ¡1 ¡1 ¡1 ¡1 ¡1 1 ¡1 1 ¡1 ¡1 ¡1
1 ¡1 ¡1 ¡1 ¡1 ¡1 1 ¡1 ¡1 ¡1 ¡1 ¡1 1 ¡1 1 ¡1
1 ¡1 ¡1 ¡1 ¡1 ¡1 1 ¡1 1 ¡1 ¡1 ¡1 1 ¡1 1 ¡1
1 ¡1 ¡1 ¡1 1 ¡1 1 ¡1 1 ¡1 ¡1 ¡1 ¡1 ¡1 1 ¡1
1 ¡1 ¡1 ¡1 1 ¡1 1 ¡1 ¡1 ¡1 ¡1 ¡1 ¡1 ¡1 1 ¡1

3777777777777775
: (4)

In the phase-coded overlay defined by (1) and (2),
it was straightforward to show that the overlay
(namely A) was orthogonal. In the frequency-coded
overlay described by (3) or (4), the meaning
of orthogonality is not so simple. The test will
have to be the removal of the autocorrelation
sidelobes.
Because the suggested new overlay involves FM,

it is of special interest to test it with signals that
are already frequency modulated. In Sections III,
IV, and V it is applied to Costas, linear FM (LFM),
and modified Costas. But first, in Section II, it is
applied to unmodulated pulses, in order to compare
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Fig. 4. ACF of train of 8 constant frequency pulses (with derivative phase overlay).

Fig. 5. Spectrum of train of 8 constant frequency pulses (with derivative phase overlay).

its performances with those obtained with phase-coded
overlay and presented in Fig. 2.

II. DERIVATIVE PHASE OVERLAY ON
UNMODULATED PULSES

The original pulse train to which the DP overlay is
added is identical to the one used to generate Figs. 1
and 2. However, the basic time unit in the drawings is
tb = ts=2, because tb is the duration of each frequency
step. The remaining relationships are

T =Mts = 2Mtb = 16tb

Tr = 2:5T = 40tb

PTr = 8Tr = 320tb:

The signal’s amplitude and frequency steps in the
time domain are plotted in Fig. 3, the resulted ACF
in Fig. 4, and the spectrum in Fig. 5.
The top subplot in Fig. 4 displays the entire ACF

and should be compared with the top subplot of
Fig. 2 (recalling that ts = 2tb). It shows that indeed
most of the near sidelobes are removed. The zoom
in the bottom subplot of Fig. 4 shows the extent
of the ACF sidelobes removal. Here the sidelobes
reach a level of ¡70 dB at ¿ = 2:8tb = 1:4ts, and (not
shown) become identically zero for t¸ 3tb = 1:5ts.
Recall that in the phase-coded orthogonal overlay the
ACF sidelobes became identically zero at ¿ = ts. The
practical conclusion is that the DP overlay removes

the near sidelobes almost as well as the phase-coded
orthogonal overlay did. The attenuation of the ACF
recurrent lobes is also very similar.
An important advantage of the DP overlay is the

more confined spectrum, as can be seen by comparing
Fig. 2 (bottom subplot) with Fig. 5. At normalized
frequency of fPTr = 1200 (fts = 7:5) the spectrum of
the phase-coded overlay (Fig. 2) reached a level of
approximately ¡25 dB, while the spectrum of the DP
overlay was down to ¡40 dB. In Fig. 5 both negative
and positive frequencies are displayed in order to
show the asymmetrical spectrum.
Overlay on a train of unmodulated pulses provides

an opportunity to show the effect of the particular
overlay code on the ambiguity function. Fig. 6
presents the ambiguity functions (extended in delay
for the duration of one pulse) using both types of
frequency coding overlay matrices. The zero-Doppler
cut of the ambiguity function confirms the removed
ACF sidelobes. The plot shows the gradual build-up
of sidelobes with increasing Doppler, slower with the
PONS based overlay. The first Doppler null at ¿ = 0
appears at a Doppler shift that is the inverse of the
entire train duration, namely at º = 1=PTr. This is
expected, because the added FM does not affect the
zero-delay cut of the ambiguity function.
It is worth noting that DP can’t always replace

binary phase coding. For example, if DP is used to
create a complementary pair, the sidelobes are not
necessarily completely removed. Consider the ACF
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Fig. 6. Partial ambiguity function of train of 8 constant frequency pulses. DP overlay: top–using (3), bottom–using (4) (PONS).
Delay axis extends as far as one pulse duration.

sidelobes of a 26 element complementary pair

[0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 1 0 1 1 1 0 0 1 1 1]

[0 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 0 1 0 0 0 1 1 0 0 0]:

As Fig. 7 shows, the ACF sidelobes remain at a level
of approximately ¡35 dB for one half of the pulse
duration, and becomes identically zero only for the
remaining half.

DP modulation is similar in many respects to
continuous phase frequency shift keying (CPFSK)
used in communications [7], and in particular to
minimum shift keying (MSK). In those methods
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Fig. 7. ACF of 26 element binary complementary pair implemented using DP.

Fig. 8. Frequency evolution in 2nd pulse (out of 8 pulses) using rectangular (top) and raised-cosine (bottom) overlay waveforms.

Fig. 9. Frequency evolution in 2nd 16-element Costas pulse (out of 8 pulses) (with DP overlay).

further reduction in the spectral width is obtained
by replacing the rectangular frequency step with
other waveforms, e.g., a raised-cosine (RC)
waveform,

r(t) = 1¡ cos 2¼t
tb
, 0· t· tb: (5)

We tested RC waveform instead of the rectangular
frequency modulating waveform, through which the
binary overlay was implemented. A comparison of the
frequency evolution of the 2nd unmodulated (other
than overlay) pulse, in both approaches is shown
in Fig. 8. Note that the peak frequency deviation in
the RC waveform (lower subplot) is twice the peak
frequency deviation of the rectangular waveform, in
order to achieve the same phase accumulation at the
end of each bit. We found out that the RC waveform
produced the same ACF sidelobe removal as did
the rectangular waveform. However, there was no
meaningful improvement in the spectrum. Hence, in
the remaining sections, the rectangular waveform is
used.
Having demonstrated, using a train of 8

unmodulated pulses, that the DP overlay is as

effective, in removing ACF sidelobes, as orthogonal
phase-coded binary overlay, we proceed to check its
performances with three frequency modulated pulse
trains: Costas, LFM, and modified Costas. In the case
of the binary phase-coded overlay [1], it was shown
that as far as removing the ACF sidelobes, the type
of the underlying identical pulses made no difference.
We thus expect that once we find a frequency-coded
replacement to the binary overlay, as demonstrated
on the unmodulated pulses, it will work just as well
on modulated pulses, no matter what their particular
modulation is.

III. DERIVATIVE PHASE OVERLAY ON COSTAS
PULSES

The number of slices M in an orthogonal
overlay need not match the number of elements
in the original coded pulse. Still, it is appealing to
match the two. Since there are 16 frequency steps
in an 8 slice DP overlay, we choose a 16-element
Costas pulse [8] with the frequency sequence:
f1 10 15 14 4 6 9 5 16 7 2 3 13 11 8 12g. The
coherent train still contains 8 pulses. The minimal
frequency step in a Costas signal is ¢fCostas =§1=tb,
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Fig. 10. ACF (top and middle) and spectrum (bottom) of train of eight 16-element Costas pulses (with DP overlay).

Fig. 11. Partial ambiguity function of train of eight 16-element Costas pulses (with DP overlay). Delay axis extended as far as one
pulse duration.

while the overlay frequency steps are ¢foverlay =
§1=4tb. Thus, the overlay adds relatively small
changes to the original frequency steps. The frequency
evolution of the second pulse in the train (after DP
overlay) is plotted in Fig. 9. Without the overlay the
frequency values would have been aligned with the
vertical grid.
The resulting ACF and spectrum are plotted

in Fig. 10. The top subplot presents the ACF on a

delay scale extended as far as the first recurrent lobe.
The middle subplot zooms on the near sidelobes.
The removal of sidelobes for ¿ > 2:8tb is evident.
Comparing the middle subplot of Fig. 10 with the
bottom subplot of Fig. 4 shows how much the wide
bandwidth Costas signal narrows the ACF mainlobe.
The pulse compression of a 16 element Costas
signal is 162 = 256. Indeed the mainlobe width is
approximately tb=16 = T=256. The lower subplot
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Fig. 12. Partial ambiguity function of train of eight 16-element Costas pulses (without overlay). Delay axis extended as far as one
pulse duration.

Fig. 13. Frequency evolution in 2nd LFM pulse (out of 8 pulses) (with DP overlay).

Fig. 14. ACF of train of eight LFM pulses (with DP overlay). Delay axis extended as far as: top–first recurrent lobe,
bottom–1/4 pulse duration.

shows the relatively flat spectrum of the Costas signal,
extending (in positive frequencies) up to 8=tb. The
combined effect of narrow mainlobe (due to Costas)
and removed zero-Doppler sidelobes (due to the
overlay) is seen clearly in the ambiguity function
(Fig. 11). For comparison the ambiguity function

of the same Costas pulse train without an overlay
is shown in Fig. 12. It seems incredible how the
small frequency dither that the DP overlay adds
to the Costas frequencies makes such a profound
change in the ambiguity function sidelobe pattern near
zero-Doppler.
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Fig. 15. ACF of train of eight LFM pulses (without overlay). Delay axis extended as far as: top–first recurrent lobe,
bottom–1/4 pulse duration.

Fig. 16. Partial ambiguity function of train of eight LFM pulses (with DP overlay). Delay axis extended as far as one pulse duration.

Fig. 17. Frequency evolution in 2nd 16-element modofied Costas pulse (out of 8 pulses) (with DP coding).

IV. DERIVATIVE PHASE OVERLAY ON LFM PULSES

Stepped LFM pulses are considered in this
example. Two new parameters need to be introduced:
the step duration tc and the frequency step df. In

order to obtain a similar bandwidth to the Costas
example, we will choose tc = tb=4, df = 1=16tc. The
frequency evolution during the second pulse (out of
8 pulses) is shown in Fig. 13. The ACF appears in
Fig. 14.
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Fig. 18. ACF of train of eight modified Costas pulses (with DP overlay). Delay axis extended as far as: top–first recurrent lobe,
middle–3/16 pulse duration, bottom–1/32 pulse duration.

Fig. 19. Partial ambiguity function of train of eight 16-element modified Costas pulses (with DP overlay). Delay axis extended as far
as 3/8 pulse duration.

Comparing Fig. 14 with the ACF of a train of
identical LFM pulses without overlay (Fig. 15) reveals
that indeed, with overlay, the sidelobes beyond j¿ j>
3tb were removed, and the recurrent lobe was reduced.
However, most of the remaining sidelobes, over j¿ j<
2tb, are higher than without overlay. In both Figs. 14
and 15 the first null of the ACF is at tb=16 = T=256,
as expected since the time bandwidth product is 256.
Finally, Fig. 16 displays the ambiguity function of the
LFM train with derivative phase overlay. It shows that

the slice with sidelobes j¿ j< 3tb is actually a strip that
extends to higher Doppler frequencies.

V. DERIVATIVE PHASE OVERLAY ON MODIFIED
COSTAS PULSES

A modified Costas pulse [2, 3, 9] combines Costas
frequency coding with LFM within each Costas
element (bit). Adding LFM allows increasing the size
of the frequency step beyond the nominal ¢fCostas =
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§1=tb. The increased frequency step results in wider
bandwidth, hence higher pulse compression. One
of several discrete relationships must exist between
the LFM bandwidth B, the bit duration tb, and the
increased frequency step ¢fMod. Costas, in order to
nullify the ACF grating lobes that would show up
without the LFM. The polarity of the LFM slope need
not be fixed. In our example we use the relationships
tb¢fMod. Costas = 5 and tbB = 12:5. The frequency
evolution during pulse 2 is shown in Fig. 17. The
LFM slope polarity alternates between bits whose
frequency slots are adjacent, in order to reduce their
relatively large spectral overlap [9].
With M = 16 elements, the normalized bandwidth

is

tb(fmax¡fmin) = tbB+(M ¡ 1)tb¢fMod. Costas
= 12:5+15 ¢ 5 = 87:5 (6)

and the single-pulse time-bandwidth product (TBW) is

T(fmax¡fmin) =Mtb(fmax¡fmin) = 16 ¢ 87:5 = 1400:
(7)

Recall that the product of the bit duration times the
overlay frequency step is only tb¢f =§0:25, which
is very small compared with the minimal modified
Costas normalized frequency step of tb¢fMod. Costas
= 5. Thus the frequency evolution of the other
7 pulses in the train will be very similar to that of the
2nd pulse, plotted in Fig. 17.
The ACF of the modified Costas pulse with

DP overlay is shown in Fig. 18 using three zooms.
The removal (below ¡70 dB) of the near sidelobes
occurs beyond ¿ = 2tb = ts. The remaining sidelobes,
below ¿ = 2tb = ts, are lower than ¡35 dB. The peak
level of the first recurrent lobe is approximately
¡20 dB. The ACF mainlobe width is approximately
0:012tb ¼ T=1300, which agrees quite well with the
TBW product in (7).
The ambiguity function is shown in Fig. 19. The

delay axis extends over §6 bits which is 3/8th of
a pulsewidth. The Doppler axis extends as far as
º = 5=(PTr) = 5=(8Tr). Except for the Doppler axis
(where the ambiguity function is independent of any
FM), the ambiguity function exhibits a relatively
uniform, very low pedestal.

VI. CONCLUSIONS

We showed that in a coherent train of pulses,
practically the same ACF sidelobes removal can be
achieved when implementing orthogonal overlay
using DP, which is frequency coding, rather than
the original binary phase-coded overlay. The added
frequency coding is especially attractive for signals in
which the pulse compression was obtained originally
through FM. The DP overlay was demonstrated
on four types of pulse train signals: unmodulated

pulses, Costas pulses, LFM pulses, and modified
Costas pulses. Orthogonal overlay using DP produced
complete removal of almost the same portion of the
near sidelobes, as did phase-coded overlay. It also
drastically attenuated (below ¡20 dB) the recurrent
lobes. Finally, its spectrum decayed faster than when
phase-coded overlay was used.
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