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The performances of Marcum’s (signal + noise) − noise
((S + N)−N) integration scheme are analyzed for SW1 and SW2
fluctuating targets. This lesser known integration concept was not
treated by Swerling when he extended Marcum’s main signal +
noise integration to four cases of fluctuating targets. We present
closed-form probability density (pdfs) functions confirmed and
extended by simulations. We show typical signal-to-noise ratio (SNR)
loss of 1 dB for both SW1 and SW2, agreeing with Marcum’s result
for SW0. (S + N)−N integration is inherent in our work on
noncoherent pulse compression, hence the renewed interest.
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I. INTRODUCTION

In his seminal 1947 research memorandum [1], J. I.
Marcum laid the basics of noncoherent integration of radar
returns from nonfluctuating targets. A section of that
memorandum is devoted to a special noncoherent
integration scheme

. . . in which a pulse known to be only noise is subtracted
from each possible signal plus noise pulse. M of these com-
posite pulses are then integrated. With no signal, the aver-
age value of any number of such composite pulses is nearly
zero . . ..

Effectively (signal + noise) − noise (S + N)−N
integration scheme uses a mismatched reference, and some
detection loss is expected. In the Appendix to his research
memorandum (following (184)), Marcum states that

There appears to be no significant difference in the proba-
bilities of detection for M between 1 and 10 (pulses). For
M between 100 and 1000, the composite case gives an
effective signal-to-noise ratio about 1 dB lower than the
ordinary case.

P. Swerling [2] extended Marcum’s work to fluctuating
targets, but did not include in his extension the (S + N)−N
integration scheme.

In this paper we analyzed (S + N)−N detection
performances for Swerling 1 and Swerling 2 fluctuating
targets. Theoretical expressions were developed for the
probability density functions (pdf) as a function of
signal-to-noise ratio (SNR) and the number of integrated
composite pulses (M). The theoretical expressions were
confirmed by Monte-Carlo simulations. Probability of
detection (PD) as a function of SNR were obtained by
simulations, with the probability of false alarm (PFA) and
M as parameters.

II. MOTIVATION

Marcum’s (S + N)−N integration is inherent in our
work on noncoherent pulse compression [3-6]. The
concept is demonstrated in Fig. 1, which shows
noncoherent pulse compression based on Barker 13. The
top subplot displays the transmitted signal, constructed
from 13 subpulses. It is an ON-OFF keyed unipolar signal
obtained by Manchester encoding a Barker 13 code. Such
a unipolar signal can be generated by noncoherent source
(e.g., magnetrons, lasers, optical masks, etc.). The top
subplot also represents the envelope-detected reflection
from a point target before noise is added. The middle
subplot displays the reference signal, stored in the
receiver, with which the received signal is correlated. The
normalized cross-correlation is plotted in the lower
subplot. The positive part of the cross-correlation, the only
part used as an output, resembles the autocorrelation of a
bipolar Barker 13 signal. The similar outputs mean that
shape-wise noncoherent pulse compression yields results
similar to coherent pulse compression.
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Fig. 1. Transmitted pulses (top), reference signal (middle), resulting
cross-correlation (bottom). Based on Barker 13

[1 1 1 1 1 -1 -1 1 1 -1 1 -1 1].

The arrows and labels inserted in Fig. 1 explain the
relation to (S + N)–N integration. At delay = 0 the signal
and reference are aligned as plotted. Note that each
returned pulse (the first one is marked as S + N) is
multiplied by a positive reference pulse. All the negative
reference pulses multiply noise-only receptions (the first
one is marked as N). This is an implementation of
Marcum’s alternative integration scheme, analyzed in the
present paper. Noncoherent pulse compression based on
minimum peak sidelobe (MPSL) binary code of length
1112 was recently implemented in a laser range finder [6].

A periodic case was recently demonstrated using
magnetron marine radar [5]. Periodic groups of 8 pulses
were ON-OFF modulated according to Manchester-coded
Barker 4. The transmitted periodic sequence was {0 1 1
0 1 0 1 0}, where “1” implies a transmitted pulse and
“0” implies an omitted pulse. The corresponding reference
sequence in the receiver was {−1 1 1 −1 1 −1 1 −1}.
In each period of 8 pulse repetition intervals (PRIs), 4
receptions when no pulse was transmitted are subtracted
from 4 reflections of transmitted pulses. The periodic
cross-correlation between the two sequences is ideal
{1 0 0 0 0 0 0 0}, implying an extension of the
unambiguous delay to 8 × PRI. In addition to ON-OFF
coding based on Barker 4, [5] shows results based on
Ipatov 5 binary code, which results in an extension of the
unambiguous delay to 5 × PRI. Another important
advantage of (S + N)–N integration, demonstrated in the
field trials [5], is the zero-centered noise-only output.
Conventional (S + N) noncoherent integration was
implemented simultaneously by using a reference periodic
sequence identical to the transmitted periodic sequence.
The mean of its noise-only output is not zero but depends
on the noise level and the number of pulses integrated.
Fig. 2 presents detection of a small boat in calm sea at a
range of 1.2 km, from coastal magnetron radar. Both
(S + N) and (S + N)–N integration results are shown. The

Fig. 2. Small boat detection by coastal magnetron marine radar using
conventional (S + N) integration (dash) and (S + N)–N integration

(solid).

need to quantify the SNR loss of the (S + N)–N
integration, relative to the conventional (S + N)
integration, prompted the analysis presented in the
following sections.

Note in Fig. 2 that at short range (< 0.2 km), near-
clutter returns are stronger than thermal noise. In that case
off-target detection produces (C + N)–N
((clutter + noise)−noise), which is not centered around
zero. C represents clutter return.

TERMINOLOGY

z Normalized output of a square-law detector.
M Number of pulses or composite pulses.
y =∑M

i = 1 zi Sum of M outputs.
ω Fourier variable.
σ 2 Noise variance.
A Amplitude of the received signal.
SNR = x = A2

2σ 2 Input signal-to-noise ratio.

x = A2
0

σ 2 Average input SNR ratio for Rayleigh-
distributed fluctuating target.

yT Detection threshold for y.

III. MARCUM’S RESULTS FOR SQUARE-LAW
DETECTION OF NONFLUCTUATING TARGETS
(SWERLING 0)

When the output of a single detected pulse following
square-law detector

r2 = (A + nI )2 + n2
Q, nI,Q : N

(
0, σ 2) (1)

is normalized according to

z = r2

2σ 2
(2)

then the pdf of z is given by [1]

p (z| A) = exp

[
−
(

z + A2

2σ 2

)]
I0

[√
2zA2

σ 2

]
. (3)
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I0 is the modified Bessel function. Using the expression
for SNR

x = A2

2σ 2
(4)

(3) becomes

p (z| x) = e(−z−x)I0
[
2
√

xz
]
. (5)

The corresponding characteristic function is

C1 (ω) = e−x

1 + ω
e

x
1 + ω . (6)

The characteristic function of the sum of M independent
detected pulses is

CM (ω) = [C1 (ω)]M = e−Mx

(1 + ω)M
e

Mx
1 + ω . (7)

The inverse transform yields the pdf of y (the sum of M
normalized detected pulses z)

p (y| x) =
( y

Mx

)M−1
2

e(−y−Mx)

×IM−1

[
2
√

Mxy
]
, y ≥ 0, zero elswhere. (8)

Setting x = 0 in (7) yields the noise-only case

CM noise (ω) = 1

(1 + ω)M
. (9)

The corresponding noise-only pdf is

p (y) = yM−1e−y

(M − 1)!
, y ≥ 0, zero elsewhere. (10)

For the noise-only case we can derive a closed-form
expression of the probability of crossing a threshold. Thus
integrating (10) yields the probability of false alarm

PFA =
∞∫

yT

yM−1e−y

(M − 1)!
dy = e−yT

M−1∑
k = 0

yk
T

k!
. (11)

The threshold yT can be extracted from (11) using a simple
MATLAB line suggested by Chernyak [7]:

yT = 0.5 ∗ chi2inv (1 − PFA , 2 ∗ M) . (12)

IV. (S + N)–N INTEGRATION FOR
NONFLUCTUATING TARGET (SWERLING 0)

The (S + N)–N noncoherent integration output can be
expressed as

r2 =
2M−1∑

m=1,3,5..

[
(A + nIm)2 + n2

Qm

]
︸ ︷︷ ︸

a

+
(

−
2M∑

m=2,4,6..

[
n2

Im + n2
Qm

])
︸ ︷︷ ︸

b

. (13)

The first term on the right hand side (RHS) of (13) is the
sum of M signal-plus-noise pulses. The second term is the

sum of M negative noise pulses. Using the results in
Section III, and applying α = −1 to the Fourier transform
rule

p(t) ⇔ C (ω) , p(αt) ⇔ C (ω/α) (14)

we get the characteristic function corresponding to the pdf
of the sum in (13)

CSNN (ω) = e−Mx

(1 + ω)M
e

Mx
1+ω

1

(1 − ω)M
= e−Mx(

1 − ω2
)M e

Mx
1+ω .

(15)
Marcum’s memorandum includes closed-form expressions
for either noise only, or signal plus noise when M = 1. For
the noise-only case setting x = 0 in (15) yields

Cnoise(ω) = 1

(1 − ω2)M
(16)

resulting in the pdf of y for noise-only

p (y) = 1√
π (M − 1)!

∣∣∣y
2

∣∣∣M− 1
2

KM− 1
2
|y| (17)

where K is the modified Bessel function of the 2nd kind.
For (S + N)–N, but M = 1, we get

p (y| x) =
⎧⎨
⎩

e
y− x

2

2 Q
(√

x, 2
√

y
)
, y > 0

e
y− x

2

2 , y ≤ 0
(18)

where Q is Marcum’s Q equation.
Marcum did not reach a closed-form expression for the

general case of nonfluctuating targets (M >1, x > 0). We
do not attempt to try this. Therefore, numerical results
with nonfluctuating targets (SW0) are obtained using
Monte Carlo simulations.

Fortunately we were able to get closed-form
expressions for Rayleigh-distributed fluctuating targets
(SW1 and SW2) for the general case (M ≥1, x ≥ 0). These
results follow, starting with M = 1.

V. (S + N)–N SINGLE PULSE PROCESSING OF
RAYLEIGH-DISTRIBUTED FLUCTUATING TARGET

We begin with a single pulse processing (M = 1) of a
Rayleigh-distributed fluctuating target. The analysis
applies to both Swerling 1 and Swerling 2, since they
differ in the degree of correlation between consecutive
pulses only when M > 1. For a single pulse the (S + N)–N
output can be expressed as

r2 = [(A + nI1)2 + n2
Q1

]︸ ︷︷ ︸
a

+ [− (n2
I2 + n2

Q2

)]︸ ︷︷ ︸
b

. (19)

Here the amplitude A is a random variable (r. v.), taken
from the Rayleigh pdf

p (A) = A

A2
0

e
−A2

2A2
0 . (20)
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The average SNR x̄ is obtained from the properties of the
Rayleigh variable A

x̄ = A2

2σ 2
= A2

0

σ 2
. (21)

From (20) and (21) we obtain the pdf of x

p (x) = 1

x̄
e

−x
x̄ . (22)

Because the a, b parts of (19) are independent, the
characteristic function can be written as

Cab|A (ω) = Ca|A (ω) Cb (ω) . (23)

For a single normalized detected pulse, the output y is

y = z = r2

2σ 2
. (24)

We can now write

p (y) =
∞∫

−∞
p (y| x) p (x) dx

=
∞∫

−∞

∞∫
0

Cab|A (ω) ejωydω

︸ ︷︷ ︸
p( y|x)

p (x) dx

=
∞∫

−∞

∞∫
0

Ca|A (ω) Cb (ω) ejωydω p (x) dx

=
∞∫

0

ejωyCb (ω)

∞∫
−∞

Ca|A (ω)p (x) dx

︸ ︷︷ ︸
Ca

dω

=
∞∫

0

ejωyCb (ω) Ca (ω) dω. (25)

Using (22) we get for the a part of (19)

Ca (ω) = 1

1 + ω (1 + x̄)
. (26)

Using the definition

D = 1

1 + x̄
(27)

(26) becomes

Ca (ω) = D

D + ω
. (28)

Cb(ω) is obtained from setting x = 0 in (6). Thus the
overall characteristic function becomes

C (ω) = Ca (ω) Cb (ω) = D

(D + ω) (1 − ω)
. (29)

Fig. 3. Single-pulse detection performances for Rayleigh fluctuating
target. (Top: PFA = 10−3. Bottom: PFA = 10−6).

As outlined in (25) we perform inverse Fourier transform
of (29) getting the pdf of y

p (y) =
{

D
1+D

ey y < 0
D

1+D
e−Dy y ≥ 0

. (30)

Setting D = 1 we get the pdf of y in the noise-only case

pnoise (y) =
{

1
2ey y < 0
1
2e−y ≥ 0

= 1

2
e−|y|. (31)

The probability of false alarm for a positive threshold
yT > 0 becomes

PFA =
∞∫

yT

1

2
e−ydy = 1

2
e−yT . (32)

Finally, for a single Rayleigh-distributed pulse,
(S + N)–N processing yields the relationship

PD = 1

1 + D
(2PFA)D , D = 1

1 + SNR
. (33)

For comparison note that in conventional noncoherent
detection of a single Rayleigh-distributed pulse, the
corresponding relationship is

PD = (PFA)D . (34)

In Fig. 3 the results of (33) and (34) are compared for two
values of PFA. The drawings show that in the case of a
single pulse the SNR loss of (S + N)–N processing is less
than 0.2 dB. This resembles Marcum’s observation
regarding nonfluctuating targets

. . . no significant difference in the probabilities of detection
for M between 1 and 10 (pulses).
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VI. M > 1, SWERLING 2

When dealing with integration of several pulses, the
dependence between them matters, and we need to define
the Swerling model. We begin with a Swerling 2 target,
in which the reflected pulses are independent. The
characteristic function of the sum of M independent r.v.,
when the individual pdf has the characteristic function in
(29) is

C (ω) = DM

[(D + ω) (1 − ω)]M
. (35)

We show in Appendix A that the resulting pdf of the
output y is given by

p (y) =
(

D

1 + D

)M
ey (−y)M−1

(M − 1)!

⎧⎪⎪⎨
⎪⎪⎩

M−1∑
k=0

[
(M+k−1)!

k!(M−1−k)! (−y (1 + D))−k
]
, y < 0

M−1∑
k=0

[
�(M + k,(1 + D)y)

k!(M−1−k)! (−y (1 + D))−k
]
, y ≥ 0

(36)

where � (a, x) is the upper incomplete gamma function
(44).

VII. M > 1, SWERLING 1

The characteristic function of Swerling 0, according to
(7), is

C (ω) = e−Mx

(ω + 1)M
· e

Mx
ω+1 . (37)

Following the Swerling approach [2] we average (37) over
the SNR variable x, getting

C (ω) = 1

(1 + ω)M−1 [1 + ω (1 + M x̄)]
. (38)

Using the procedure shown in (25) we get the final
characteristic function

C (ω) = 1

(1 + ω)M−1 [1 + ω (1 + M x̄)]

1

(1 − ω)M
.

(39)

In Appendix B we perform the inverse transform and get
the pdf of the integration output in the Swerling 1 case

p (y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

αey (−y)M−1

(M − 1)!2M

M−1∑
k = 0

(−y)−k

k! (M − 1 − k)!

� (k + M)

2k 2F1

(
1, k + M, M, 1−α

2

)
, y < 0

αey

(1 − α)M−1

M−1∑
k = 0

(−y)M−1−k

k! (M − 1 − k)!

(
(1 + α)−k−1�(k + 1, (1 + α)y) −

M−2∑
m= 0

(1 − α)m

m!
2−k−m−1�(k + m + 1, 2y)

)
, y ≥ 0

(40)

where 2F1 () is Gauss hypergeometric function and

α = 1

(1 + M x̄)
. (41)

VIII. NUMERICAL CALCULATIONS AND
CONFIRMATION BY MONTE-CARLO RUNS

A. Swerling 2

The pdf given in (36) contains several factorials.
MATLAB limits factorial calculations for arguments up to
170, and the accuracy drops before that value. To
circumvent that limit we use the property

� (n) = (n − 1)!. (42)

We also use MATLAB’s function gammaln which
calculates the logarithm of the Gamma function. Denoting

that logarithm as �ln, we use the relationship

(M + k − 1)!

(M − 1)!k! (M − 1 − k)!
= � (M + k)

� (M) � (k − 1) � (M − k)

= exp[�ln (M + k) − �ln (M) − �ln(k − 1) − �ln (M − k)].

(43)

Note also the difference between the conventional
definitions of the lower and upper incomplete gamma
functions

γ (a, x) =
x∫

0

e−t t a−1dt, � (a, x) =
∞∫

x

e−t t a−1dt (44)

and MATLAB’s corresponding definitions of gammainc
(x,a) and gammainc (x,a,tail)

P (a, x) = 1

� (a)

x∫
0

e−t t a−1dt,Q (a, x) = 1

� (a)

∞∫
x

e−t t a−1dt.

(45)
After taking care of these issues we get good agreement
between the closed-form expression (36) and Monte-Carlo

simulations, as demonstrated in the example shown in
Fig. 4.
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Fig. 4. PDF of (S + N)–N integration. SW2 case. Theory and
simulations.

Fig. 5. PDF of (S + N)–N integration. SW1 case. Theory and
simulations.

B. Swerling 1

Here we compare the closed-form expression in (40)
with Monte-Carlo simulation. An example is given in
Fig. 5. As in conventional noncoherent integration, note
the longer tail of the Swerling 1 pdf. Having demonstrated
the validity of the closed-form expressions, we next
compare conventional noncoherent integration with the
alternative integration.

IX. COMPARING MARCUM’S (S + N)–N AND
CONVENTIONAL S + N NONCOHERENT
INTEGRATIONS

We are interested in two aspects of the comparison:
1) the structure of the pdfs, especially of the noise-only

Fig. 6. PDFs of (S + N)–N and S + N integrations, SW2.

Fig. 7. PD vs. SNR for (S + N)–N and S + N integrations, SW2.

case, and 2) the additional SNR loss of the (S + N)–N
integration. For the Swerling 2 case the pdfs are shown in
Fig. 6 and the PD vs. SNR in Fig. 7. Both drawings apply
to 32 pulses and PFA = 10−5. For the SW2 case Fig. 6
demonstrates how the noise-only pdf of N–N is centered
around zero, and that the signal + noise pdf of (S + N)–N
integration has also shifted toward zero. Fig. 7 shows an
SNR loss of approximately 1dB for a wide range of PD

values. Fig. 8 displays the pdf plots for the Swerling 1
case, with its long-tailed signal + noise pdf. Here too the
signal + noise pdf of the (S + N)–N integration shifts
toward zero. The noise-only pdfs in Figs. 6 and 8 are, of
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Fig. 8. PDFs of (S + N)–N and S + N integrations, SW1.

Fig. 9. PD vs. SNR for (S + N)–N and S + N integrations, SW1.

course, identical. Fig. 9 shows that for SW1 the SNR loss
is about 1 dB too. Fig. 10 extends the comparison to the
nonfluctuating case (SW0). Fig. 10 also shows an SNR
loss of about 1dB, as reported by Marcum.

X. SUMMARY AND DISCUSSION

Marcum’s alternative noncoherent integration scheme
of (S + N)–N, originally left out of Swerling’s fluctuating
target analysis, was now analyzed for Swerling 1 and 2
targets. Closed-form pdf expressions were derived and
confirmed by simulations. The noise-only pdf of
(S + N)–N integration is shown to be centered around
zero. This is an important advantage for detection

Fig. 10. PD vs. SNR for (S + N)–N and S + N integrations, SW0.

threshold setting. We also showed that for both SW1 and
SW2 targets the SNR loss of this alternative scheme is
about 1 dB. The same loss was found by Marcum for
nonfluctuating targets (SW0). Because SW3 (or SW4)
describe a fluctuation model between SW0 and SW1 (or
SW2), it is reasonable to expect a similar SNR loss of
1dB, in the SW3 and SW4 cases as well. Weighting the
advantage of zero-centered output when detecting noise
only, against the small SNR loss, Marcum’s (S + N)–N
integration warrants favorable reconsideration.

APPENDIX A

This Appendix shows the development of the pdf in
(36) from its characteristic function in (35). We rewrite
(35) as a product

C (ω) = DM

(D + ω)M
· 1

(1 − ω)M
= C1 (ω) C2 (ω) . (46)

Each term in the product has a known inverse Fourier
transform

p1 (y) =
{

DMyM−1

(M−1)! e−Dy, y ≥ 0
0, y < 0

(47)

p2 (y) =
⎧⎨
⎩

(−y)M−1

(M − 1)!
ey, y < 0

0, y ≥ 0
. (48)

The inverse transform of the product in (46) is obtained by
convolving (47) with (48). We chose Y as the variable of
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the resulting pdf.

p (Y ) =
∞∫

Y

DMyM−1

(M − 1)!
e−DyU (y)

(y − Y )M−1

(M − 1)!
eY−ydy

= DMeY

[(M − 1)!]2

∞∫
Y

yM−1e−y(1+D)

× (y − Y )M−1 U (y) dy.

(49)

For Y < 0 the lower boundary of the integral is 0:

p (Y ) = DMeY

[(M − 1)!]2

×
∞∫

0

yM−1e−y(1+D) (y − Y )M−1 dy, Y < 0.

(50)

We use Newton’s binomial series to develop the
expression (y − Y )M−1

(y − Y )M−1 =
M−1∑
k =0

(M − 1)!

k! (M − 1 − k)!
yk (−Y )M−1−k (51)

insert it in (50) and switch the order between integration
and sum

p (Y ) = DMeY

(M − 1)!

M−1∑
k = 0

(−Y )M−1−k

k! (M − 1 − k)!

×
∞∫

0

yM+k−1e−y(1+D)dy, Y < 0. (52)

Solving the integral with the help of [8, eq. 3.351.3] we get

p (Y ) = DMeY

(M − 1)!

M−1∑
k = 0

⎡
⎢⎣

(M + k − 1)!

k! (M − 1 − k)!

× (−Y )M−1−k (1 + D)−M−k

⎤
⎥⎦

(53)

which can be further simplified to yield the following two
expressions

p (Y ) =
(

D

1 + D

)M
eY (−Y )M−1

(M − 1)!

×
M−1∑
k = 0

[
(M + k − 1)!

k! (M − 1 − k)!
(−Y (1 + D))−k

]
,

Y < 0 (54)

p (Y ) = DMeY

(M − 1)!

M−1∑
k = 0

(−Y )M−1−k

k! (M − 1 − k)!

×
∞∫

Y

yM+k−1e−y(1+D)dy, Y ≥ 0. (55)

To solve the integral in (55) we use [8, eq. 3.351.2], which
says

∞∫
Y

yne−μydy = μ−n−1� (n + 1, μY ) (56)

and get

p (Y ) =
(

D

1 + D

)M
eY (−Y )M−1

(M − 1)!

×
M−1∑
k = 0

[
� (M + k, (1 + D) Y )

k! (M − 1 − k)!
(−Y (1 + D))−k

]
,

Y ≥ 0. (57)

Exchanging Y with y in (54) and (57) produces the pdf in
(36) for the Swerling 2 case.

APPENDIX B

This Appendix shows the development of the pdf in
(40) for the Swerling 1 case. Recall that for the Swerling 0
case the characteristic function was given in (7) and is
repeated below

C (ω) = e−Mx

(ω + 1)M
· e

Mx
ω+1 . (58)

Following the Swerling approach we average over the
SNR x and get

C (ω) = 1

(1 + ω)M−1 · [1 + ω (1 + M x̄)]
. (59)

Using the conclusion described in (25) for our present
problem we get the following characteristic function:

C (ω) = 1

(1 + ω)M−1 · [1 + ω (1 + M x̄)]
· 1

(1 − ω)M
(60)

which we split into two parts:

C1 (ω) = 1

(1 + ω)M−1 · [1 + ω (1 + M x̄)]

C2 (ω) = 1

(1 − ω)M
.

(61)

The inverse transform of C2 (ω) was obtained already in
(48) as

p2 (y) =
{

(−y)M−1

(M−1)! ey, y < 0

0, y ≥ 0
. (62)

Toward performing the inverse transform of C1 (ω) we
define

α = 1

(1 + M x̄)
(63)

and rewrite C1 (ω) as

C1 (ω) = α

(1 + ω)M−1 · [α + ω]
. (64)
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Using [9, eq. 581.7] we get

p1 (y)

=
⎧⎨
⎩

α

�(M − 1) (1 − α)M−1 e−αy · γ [M − 1, (1 − α) y], y ≥ 0

0, y < 0
.

(65)

Using the property that a product in the Fourier domain
(ω) is equivalent to convolution in the Y domain, we get
the expression

p (Y ) =
∞∫

Y

α

�(M − 1) (1 − α)M−1 e−αy

·γ [M − 1, (1 − α) y] U (y)
(y − Y )M−1

(M − 1)!
eY−ydy

(66)

which can be simplified to

p (Y ) = αeY

(M − 1)! �(M − 1) (1 − α)M−1

×
∞∫

Y

γ [M − 1, (1 − α) y] (y − Y )M−1 e−y(1+α)U (y) dy.

(67)

We again apply Newton’s binomial series (51) to replace
(y − Y )M−1 in (67), and also switch the order between
integration and sum to get

p (Y ) = αeY

�(M − 1) · (1 − α)M−1

M−1∑
k = 0

(−Y )M−1−k

k! (M − 1 − k)!

×
∞∫

Y

γ [M − 1, (1 − α) y] e−y(1+α)ykU (y) dy.

(68)

For Y < 0 the lower boundary of the integral is 0. Next we
use [8, eq. 6.455.2]∫ ∞

0
xμ−1e−βxγ (v, αx) dx = αv� (μ + v)

v (α + β)μ+v

× 2F1

(
1, μ + v, v + 1,

α

α + β

)
(69)

and get

p (Y ) = αeY

�(M − 1) · (1 − α)M−1

×
M−1∑
k = 0

(−Y )M−1−k

k! (M − 1 − k)!

(1 − α)M−1 � (k + M)

(M − 1) 2k+M

× 2F1

(
1, k + M, M,

1 − α

2

)
(70)

which can be simplified to

p (Y ) = αeY (−Y )M−1

(M − 1)!2M

M−1∑
k = 0

(−Y )−k

k! (M − 1 − k)!

� (k + M)

2k

× 2F1

(
1, k + M, M,

1 − α

2

)
, Y < 0. (71)

For Y ≥ 0 we have to solve the integral in

p (Y ) = αeY

�(M − 1) · (1 − α)M−1

M−1∑
k = 0

(−Y )M−1−k

k! (M − 1 − k)!

×
∞∫

Y

γ [M − 1, (1 − α) y] e−y(1+α)ykU (y) dy.

(72)

The lower incomplete Gamma function γ [] can be
expressed as given in [8, eq. 8.352.2]:

γ [M − 1, (1 − α) y] = (M − 2)!

×
(

1 − e−(1−α)y
M−2∑
m = 0

((1 − α) y)m

m!

)
. (73)

Using (73) in the integral in (72) it becomes

∞∫
Y

γ [M − 1, (1 − α) y] e−y(1+α)ykU (y) dy

= (M − 2)!

∞∫
Y

(
1 − e−(1−α)y

M−2∑
m= 0

((1 − α) y)m

m!

)
e−y(1+α)ykdy.

(74)
The expression on the RHS of (74) can be simplified,
excluding the (M − 2)! for the moment, as

∞∫
Y

e−y(1+α)ykdy −
∞∫

Y

e−2y

M−2∑
m = 0

((1 − α) y)m

m!
ykdy. (75)

The first term in (75) can be solved using [8, eq. 3.351.2],
shown also in (56) above:

∞∫
Y

e−y(1+α)ykdy = (1 + α)−k−1 � (k + 1, (1 + α) Y ) .

(76)
The second term in (75) can be rewritten as

∞∫
Y

e−2y

M−2∑
m= 0

((1 − α) y)m

m!
ykdy

=
M−2∑
m = 0

(1 − α)m

m!

∞∫
Y

e−2yyk+mdy. (77)

We again got the same type of integral, hence the final
expression of the RHS of (74) is

(M − 2)!

(
(1 + α)−k−1�(k + 1, (1 + α)Y )

−
M−2∑
m = 0

(1 − α)m

m!
2−k−m−1�(k + m + 1, 2Y )

)
. (78)
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Inserting it in (72) we get the pdf for positive values:

p (Y ) = αeY

(1 − α)M−1

M−1∑
k = 0

(−Y )M−1−k

k! (M − 1 − k)!

×
(

(1 + α)−k−1 � (k + 1, (1 + α) Y )

−
M−2∑
m = 0

(1 − α)m

m!
2−k−m−1� (k + m + 1, 2Y )

)
,

Y ≥ 0. (79)

Combining (71) with (79) and replacing Y with y yields
the pdf expression for the Swerling 1 case,
given in (40).
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