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Abstract We present a robust generalized approach to phase 
and frequency modulated LPI Radar waveform classification 
and adaptation, inspired by deep convolutional neural 
architectures. We use a complex Ambiguity Function matrix as a 
pre-processing step, following which, a waveform classification, 
or adaptation to unlabeled reference target domains, is 
performed. We test our method on a wide range of tasks, 
datasets, and different signal distributions. Our method 
surpasses the state-of-the-art performance on classification 
problems on multi-encoding, multi-feature datasets, in diverse 
and challenging conditions. Our novel approach to an unlabeled 
Radar waveform adaptation reveals impressive classification 
improvements to domain shifted unlabeled signals. 

Index Terms — Ambiguity function, convolutional neural 
networks, domain adaptation, EW, LPI, waveform 
classification. 

I. INTRODUCTION 

Radar emitter detection and recognition, as well as its 
waveform classification, is a critical issue in military Radar 
applications. It is also relevant in intercept receivers used for 
electronic warfare (EW) mission, hostile emitter intelligence 
collection, and construction of effective jamming responses. 
Of special importance are low probability of intercept (LPI) 
waveforms, operating at an extremely low signal to noise 
ratio (SNR).  

Almost all present radar waveform classification 
algorithms are feature-based methods, incorporating solution-
tailored feature extractor, followed by a waveform 
modulation classifier. Successful waveform classification 
techniques in the literature are heavily based on signal feature 
selection and extraction, such as signal statistics, temporal 
and spectral analysis, signal wavelet transforms, image 
processing, denoising, and many more. The extracted signal 
features are then further processed by applying an exhaustive 
feature search for classification performance improvement. 
The extracted diverse features are used as a classifier input, 
which may consist of an ensemble of classical machine 
learning (ML) or deep learning (DL) models, and in some 
cases, decision-tree-based classification models. The 
classifiers are usually trained on a wide range of previously 
extracted features, and accompanying research of high-level 
and low-level hyperparameters and architectures is being 
performed. While most approaches focus on feature 
extraction and classifier architecture construction, few known 
methods introduce robust, feature-flexible, and real-time 
applicable solutions. Popular approaches focus on time-
frequency image (TFI) representations, used in speech and 
communication signal analysis. They use reassigned short-
time Fourier transform (RSTFT) [1], Wigner-Ville 
distributions (WVD) [2] and Choi-Williams distributions 

(CWD) [3,6]. Other approaches utilize Radar specific 
analysis tools, such as temporal auto-correlation function 
(ACF) [4] and ambiguity function (AF) representations 
[5,10]. Extensive feature extraction-based methods [6] make 
use of statistical features (such as Pseudo-Zernike [3,6] 
moments and cumulants), TFI based features (such as CWD 
time peak location [3,6], Radon-Wigner transform, etc.) PSD 
related features (e.g. instantaneous frequency and phase) and 
more. 

Further, significant multi-stage pre-processing is 
performed, e.g., image binarization, noise mitigation, etc. 
The waveform classifiers (WFCs) are mainly being tailored 
and adjusted to carefully chosen feature representations. 
Among the most popular models, there are state vector 
machines [5,7] (SVM), fully connected (FC) or dense 
artificial neural networks (ANN) coupled with convolutional 
neural networks [1,2,8,9] (CNN) and auto-encoder [10] (AE) 
based methods. The proposed model in [8] is an example of a 
custom CNN classifier, using a smoothed WVD signal 
representation. The models in the literature are often coupled 
with exhaustive parameter and architectural structure search 
for multi-class modulation classification. 

The main drawbacks of known waveform classification 
solutions include manual feature selection and exhaustive 
searches for tailor-made classification parameters and rules. 
Additionally, the variety of known trained classifiers in the 
open literature do not address the domain shift problem, 
which essentially means that a well-performing classifier, 
trained on data generated by synthetic simulations or 
cooperative emitters, will fail to classify non-cooperative, 
real-world-scenario emitter recordings, due to different signal 
feature distributions. One cannot train a classifier using 
traditional, supervised techniques, without known labels for 
the intercepted Radar samples (which is usually the case for 
non-cooperative emitters intercepted by a passive receiver). 

To answer the need for an unconstrained, generalized, and 
an easily adaptable waveform classification, in an emitter-
saturated-environment, we present a unified approach, which 
targets generalization and adaptation driven performance. 
Robust, yet simple to implement, understand and adapt to, 
our approach, for the multi-feature waveform classification 
task, is based on the award-winning Oxford-based Visual 
Geometry Group's 16-layer CNN architecture (VGG16) [11], 
along with an incorporation of a surprisingly effective 
transfer learning optimization technique [12]. The final 
classification is being done by a generalization-driven, metric 
K-Nearest-Neighbor (KNN) based methods. Our approach 
outperforms the current state-of-the-art Radar waveform 
classifiers while addressing more complex and realistic 
multi-class configurations, successfully classifying all tested 
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classes in an extremely harsh noisy environment at very low 
(-10dB) SNR conditions. Furthermore, we utilize our 
approach for a generative adversarial network (GAN) [13] 
based solution to the yet-to-be-addressed hard problem of 
unlabeled domain shifted Radar signals classification, using 
an unsupervised adversarial metric Domain Adaptation (DA) 
technology [14], which proves to be effective on the 
aforementioned unlabeled datasets. Our novel solution 
discloses a general, easy to train method for Radar waveform 
classification, with state-of-the-art performance, and 
importantly, our method is successfully applied to a diverse 
range of tasks, while avoiding the need for any feature 
extraction and classification model parameter searches. 

This paper is organized as follows. Section II introduces 
the intercepted signal model, its AF representation, and an 
overview of typical Radar modulations. The proposed 
supervised metric VGG16 deep Radar waveform classifier 
approach is described in Section III. Section IV covers 
unlabeled DA solution using unsupervised, metric-based 
adversarial technology. Finally, Section V presents 
simulation results for all addressed problems and discusses 
the observed classification and adaptation performance. 

II. INTERCEPTED LPI SIGNAL MODEL 

The waveform classification problem requires a passive 
receiver to be able to successfully classify and recognize the 
underlying signal characteristics, such as the intentional 
waveform modulation type, pulse width (PW), spectral 
bandwidth (BW), etc. Our approach assumes that the input 
signal to our model has been detected, intercepted, pre-
processed, and sampled. The detected signal, of constant 
amplitude A  and instantaneous phase, �  is down-converted 
to the intermediate frequency by estimating and removing the 
carrier frequency and then sampled, resulting in a discrete 
sampled complex envelope of the intercepted signal [ ]y n . 
Furthermore, we assume that the intercepted signal consists 
of a single pulse only, of unknown duration pw� , consisting 
of a single code period, entirely contained within a sampling 
interval of duration IT , which we assume to be larger than 
the pulse repetition interval (PRI), with a complex noise 

[ ]m n  added therein. Then, if for example, the signal is 

transmitted in an additive white Gaussian noise (AWGN) 
environment, with two-sided power spectral density 0 / 2N , 
the intercepted discrete-time signal model [ ]y n   is given by:  

 [ ][ ]  [ ] [ ] [ ]j ny n u n m n Ae m n�� � � �  (1)  

where [ ]u n  is the complex envelope of the transmitted 
signal. We define n  as the sample index, increasing with 
every sampling interval ST , s.t there are  /I SN T T�  samples 
contained within the intercepted interval IT , sampled at the 
sampling frequency of 1 /s Sf T� . Furthermore, the 
instantaneous phase [ ]n�  is composed of the instantaneous 
frequency [ ]f n  and the instantaneous phase offset [ ]n� , as 
follows: 

 [ ] 2 [ ]  [ ]Sn f n T n n� � �� � �  (2)  

where the temporal dependencies of [ ]f n  and [ ]n�  are 
represented by frequency and phase modulation, respectively. 

The Radar signal modulation is a popular signal 
modification technique that makes each modulated signal a 
unique waveform. The modulation in the Radar domain is a 
widely used, almost mandatory, technique. Often used in 
conjunction to matched (or mismatched) filtering, the 
waveform modulation is useful for achieving maximum SNR 
[15], in addition to obtaining the desired signal, ACF and AF 
properties (such as better delay or Doppler resolution, 
minimum peak sidelobes, minimum integrated sidelobes, 
etc.). The Radar modulation types possess the features of an 
irreplaceable and valuable toolkit for Radar signal engineers. 
The Radar modulation families essentially contain 3 basic 
types [15]: (a) Rectangular pulse (no modulation), (b) 
Frequency modulation (FM) such as Linear Frequency 
Modulation (LFM), Costas codes etc., and (c) Phase 
modulation (PM) such as binary phase-shift keying (BPSK) 
codes (e.g. Barker) and polyphase codes (e.g. P1-P4, Frank 
code, T1-T4 etc.). The unique benefits each waveform 
modulation provides can be analyzed by computing the 
intercepted signal complex envelope's auto-correlation 
function (ACF) given by: 

 	 
 	 
 	 
*R u t u t dt� �
�

��

� �
  (3)  

where 	 
u t is the intercepted signal's complex envelope. 
The ACF gives us information about the analyzed 

waveform's temporal properties (e.g., mainlobe width, 
sidelobe height, recurrent sidelobes, etc.). If we would like to 
analyze the Doppler shift effect on a given waveform we 
would look at the doppler shifted complex envelope of 	 
u t , 
denoted by 	 
Du t , and plugging it into the ACF, taking the 
absolute value of the result, which yields the standardized 
absolute valued AF denoted by 	 
 2

,� � � , as follows[15]: 

 	 
 	 
 	 
exp 2Du t u t j t���  (4)  
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2 *, exp 2u t u t j t dt� � � � ��
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� �
  (5)  

where �  expresses the Doppler shift. Since the AF is 
symmetrical with respect to the origin, usually only one half 

TABLE I 
SUMMARY OF USED WAVEFORM MODULATIONS 

Modulation 
Type 

Phase 
Modulation 

Frequency 
Modulation 

Rectangular const. const. 

LFM 
2

PW

BW
t

T
�  

PW

BW
t

T
 

Barker 7 [1,1,1,0,0,1,0]�  const. 

Barker 13 1,1,1,1,1,0,0 ],[ ,1,1,0 1,0,1�  const. 

P4 7 	 
2
1 4 ;1 7

7 2

m
m m

� � �� � � �� �
� �

 const. 

P4 13 	 
2
1 7 ;1 13

13 2

m
m m

� � �� � � �� �
� �

 const. 
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of the Doppler plane (positive or negative Doppler shifts) is 
required. The AF is computed using the code from [16]. For 
the simulations made in the scope of the current research, we 
used different practical modulations, including Rectangular, 
LFM, Barker 7, Barker 13, 7-sized P4, and 13-sized P4 
codes. Additionally, we alternated the PWs and the BWs of 
all pulses, while for LFM modulation we also changed the 
LFM slope, reflected by the time-bandwidth (TBW) product, 
which considered one of the most important, performance 
defining, parameters of the LFM modulation. For each 
experiment, we used a different combination of modulations 
and pulse characteristics, defining each class, and making its 
features distinct. The specific modulations used for our 
experiments are shown in Table I [15]. It is also worth noting 
that the AF usually calculated using only a single intercepted 
pulse, without access to the reference pulse, at the passive 
intercepting receiver. Our signal representation choice, as an 
input for the classification and adaptation methods, based on 
the AF, as follows:  
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 (6)  

More specifically, we use a 3-channel tensor (similarly to 
RGB channels for images) using the complex AF's real and 
imaginary matrices shown in (6), where 3m n

AFT � � �  is a 3-
channel input tensor. As for the dimensions ,m n , we can 
sample the AF in any desired dimension, using the code in 
[16]. We chose the code parameters to achieve a sampled 
positive Doppler AF with 99, 99n m� �  resulting in a 
99 99 3� � tensor, as our signal representation choice. 

III. METRIC-BASED DNN WAVEFORM CLASSIFICATION 

In the last decade, there was an unignorable rise in the 
popularity of deep neural networks (DNN), proving to be 
effective and achieving numerous breakthroughs in a wide 
variety of research areas. In our classification method, we 
made use of one of the popular, pre-defined, DNN 
architectures, and performed an effective initialization 
weights transfer, which contributed greatly to a fast model 
convergence. 

A. VGG16 Based Classifier With Transfer Learning 

The CNN [17] is a specific DNN layer architecture 
category, which has received much attention in computer 
vision (CV) complicated tasks, especially excelling in image 
classification and object detection. The convolutional kernel 

window uses many-to-one transform and reducing the output 
tensor's dimensions. If we denote the convolution square 
kernel spatial extent as F , the window stride size as S , the  
amount of zero padding as P and the number of kernels (or 
filters) as K , the output of the CNN layer, with regard to its 
input, will have the following size: 

 

	 

	 


2 / 1

2 / 1

output input

output input

output

W W F P S

H H F P S

D K

� � � �

� � � �

�

. (7)  

There are plenty of popular, pre-defined CNN based 
architectures specializing in different tasks each. These pre-
defined models are the result of long, empirical, and 
comprehensive researches, which prove to be more than 
suitable for major CV tasks. Among the most successful 
models is the 16-layer pre-defined model, proposed by 
Oxford's Visual Geometry Group [11], referred to as VGG16, 
best known as an award-winning model in the infamous 
ImageNet 1000-class classification challenge [18]. For our 
current research, we chose VGG16 as our single classifier 
model, for its impressive, multidisciplinary, success record. 
Due to the lack of available pre-trained Radar classification 
VGG16 models, we utilized the transfer learning paradigm 
[12]. Our training process used the pre-trained ImageNet-
VGG16 weights as an initialization stage, and despite the 
significant domain difference, the model converged 
successfully, learning useful features from our AF signal 
representation. For further classification improvement and 
information loss reduction, following ideas from metric-
based classification and adaptation techniques [19,20], we 
replaced the SoftMax layer in the VGG16 CNN with a 256-
feature embedding FC layer, forming clustered, space defined 
classes. We perform the training with optimization of the 
triplet loss function expressed as follows [14]: 

 

	 
 	 
 	 


	 
 	 


2

, ,

2

max

, 0

S S

i i i

S S

S i i
a p n

i i

f a f p

f a f n m

� �

� �

� �� � ��
�

�� � �
�

!�

 (8)  

where , ,i i ia p n  represent the arbitrary anchor sample, the 
positive (anchor shared class) sample and negative (different 
class) sample, respectively, m  is the distance threshold and 

( )
S

f� �  is the VGG16 model. The triplet loss function 
optimization may be seen effectively as a way to reassure 
that every negative sample is drawn away, and every 
positive, class sharing, embedding sample is pushed towards 
the anchor point, making same-class samples to gather 
around their corresponding cluster center. Finally, the actual 
classification uses the KNN algorithm introduced. Given 

thi sample denoted ix , CN  samples associated with class c , 
a ground-truth label of the thi  sample, iy , and the Euclidian 
distance operator ( )d � , the predicted class label is given by: 

 �
	 


	 

1,...,

arg min ,i C
c C

y d x "
 

�  (9)  
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where 

 
, .

1

i

C i
c i s t y c

x
N

"
�

� ! . (10)  

with c" being the cluster center, representing the spatial 
extent of class c . The complete architecture of our proposed, 
VGG16 transfer-learning-based unified model can be seen in 
Fig. 1. 
 

B.  Case Study: AWGN Denoising With Signal Averaging 

As seen, our proposed model uses a single pulse with no 
noise channel assumptions, for achieving robust and 
generalized classification performance. It is interesting to 
assess our model's performance while integrating known 
task-supporting techniques, such as signal denoising. For this 
case study, we examine the effects of the widely used Signal 
Averaging (SA) technique on an oversampled signal. The SA 
technique uses an oversampling factor T , which means 
sampling the same signal value by T more times, and 
averaging along the T received samples, as follows: 

 ,
1 1

1 n T

avg i j
i j

V y
n � �

� !!  (11)  

where n represents the number of oversampled intervals 
and ,i jy represents the thj oversampled signal sample, in the 

thi interval. The described SA method practically means 
exploiting the AWGN zero expectation property, which is 
expected to mitigate the interleaved noise effectively. For our 
experiment, we do not train our VGG16 embedding feature 
space model any further, but test it on an oversampled 
signal's AFs, only choosing the oversampling factor and 
performing SA technique. 

IV. UNSUPERVISED ADVERSARIAL DOMAIN ADAPTATION 

An important and non-trivial problem in passive LPI Radar 
signal classification is unlabeled and differently distributed 
datasets in a physical RF-rich environment. One can simulate 
different disrupted synthetic Radar signals, and easily label 
them for supervised classification, to achieve acceptable 
waveform classification performance. However,  

 

 
Fig. 2. The model for our proposed unlabeled DA method based 
on the M-ADDA adversarial model [14]. The source encoder is our 
metric-based VGG16 model, and it initializes the target encoder's 
weights. 
 
when immigrating from the synthetic simulation environment 
in the laboratory to a real-world, typically non-cooperative, 
scenario, the relatively simple and automatic labeling task 
becomes nearly impossible. To our knowledge, there are no 
openly published works to address this difficult problem. The 
differently distributed, and relatively small recorded datasets 
that usually do not have associated labels (due to the non-
cooperative emitter's nature) are often referred to as the 
domain shift problem in the deep learning literature. The 
unsupervised generative domain adaptation approaches 
[22,23] are best known for their impressive and effective 
results for the domain shift problem. These approaches 
mainly utilize the GAN technology [13] in order to project 
the source (i.e., training, labeled dataset) and target (i.e., 
unlabeled, differently distributed dataset) distributions onto a 
shared space. We propose an effective DA approach, based 
on a state-of-the-art DA technique known as M-ADDA [14], 
while using our aforementioned pre-trained VGG16-based 

 
Fig. 1. Full metric based VGG16 model architecture illustration, with 3-Channel AF signal representation and 256-sized embeddings. 
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metric model's weights and architecture, as a baseline for 
source and target encoders initialization and training. The 
proposed model consists of one pre-training source model 
stage, followed by two alternating target model training 
stages. The source pre-training is done with the VGG16 
using the triplet loss function. The target training starts with a 
duplication of the trained source encoder's weights, S

E� , 
which initialize the similar target VGG16 encoder, TE

E� . 
Subsequently, for discriminating source samples from target 
samples, an alternation between generator training and 
discriminator D

D�  training (a binary class FC-DNN) is done, 
using adversarial loss function [13], when our target is to fool 
the discriminator to achieve shared embedding distribution 
space projection. The final training stage includes periodic 
optimization of the center magnet (C-Magnet) loss function 
[20], using the cluster centers from the source training set 
embeddings, and pulling the target's unlabeled samples 
towards the shared classes. The adversarial loss and the C-
Magnet loss are presented in eqs. (12) and (13), respectively. 

jC  is the thj  cluster center, and ( )
T if x� represents the target 

encoder applied to the thi sample. A detailed illustration of 
our unlabeled Radar DA model appears in Fig. 2. 
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 min ( )
TC Mag T i j

j
i T

f x C���
 

� �!�  (13)  

V. SIMULATION RESULTS 

All simulation results presented are based on our metric 
VGG16 proposed model. The simulations were done on a 
GeForce™ GTX 1080Ti single GPU and Intel™ Core i9 
7900X CPU. The Radar signal simulation was done in 
MathWorks™ MATLAB R2019a environment, and the DNN 
models were implemented using PyTorch™ 1.01 DL 
framework written in Python 3.7.1 language. 

A. Unified-Metric VGG16 Waveform Classification 

We train our proposed AF embedding encoder and KNN 
classifier on a feature-fused diverse dataset, consisting of 9 
different classes, taken from Table I. Additionally, we added 
practically important pulse parameters, such as different PWs 
and BWs, to different classes with the same modulation. The 
training used the pre-trained ImageNet VGG16 network 
weights as the initialization stage and Adam [24] 
optimization. Firstly, we perform transfer learning from 
ImageNet to Radar AF represented waveforms, using a 
modified SoftMax layer (observing only 9 of 1000 output 
classes) for 150 epochs. Secondly, replacing the SoftMax 
layer with a randomly initialized (using Xavier [25] 
initialization method) FC layer that generates the 
aforementioned 256-dimensional feature embedding 
representations, which we trained with the triplet loss 
function. 

 
Fig. 3. Waveform classification accuracy results compared to 
other models' performances. Our proposed AF-based metric VGG16 
model achieves 98.9% performance at SNR = -10dB 
 

The training process, with a learning rate decay technique, 
lasted about 15 hours, while the significant model conversion 
took less than 2 hours, during which the validation error 
decreased by 96.2%. The final test results, using an unseen 
test set, and assessed for each of the tested 11 SNRs, are 
compared to different, AF based, classification techniques 
used in previously mentioned works: SVM, quadratic kernel 
SVM, 8-layered FC-DNN, and our proposed Metric VGG16 
models. The comparison results are shown in Fig. 3, and one 
can easily observe that our approach demonstrates superior 
performance, for an impressive 98.9% classification accuracy 
at a very low SNR of -10dB.  

B. Case-Study: AWGN With Signal Averaging 

For the AWGN special case we used the aforementioned 
SA technique, with an oversampling factor of 20 (i.e. 
averaging each 20 sample intervals), using the same test 
dataset trained VGG16 metric-based model from the 
waveform classification experiment, with the aim of 
examining the SA technique on our model's performance at 
extremely low SNRs (lower than -24dB). The results are 
shown in Fig. 4, and provide a solid proof of the 
effectiveness of our method combined with the SA technique 
in the special, yet practically common, AWGN case.  

C. Unlabeled Signals Domain Adaptation 

In the current experiment, we will test our proposed novel 
solution, based on an existing M-ADDA [14] unsupervised 
domain adaptation solution. The training of the M-ADDA 
model consists of two main recurrently alternating phases: 1) 
Source model triplet-based training, and 2) Interleaved 
adversarial training, followed by C-Magnet-based training 
instance, for target and discriminator training. The source and 
target encoders, similarly to our other experiments, are 
initialized with our metric VGG16 model. We use the pre-
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trained source encoder for target training, using -12dB and -
14dB SNR unlabeled signal samples as target datasets, which 
our model performs poorly on. The 60-epoch adversarial 
training lasted for 5 hours. The waveform classification 
performance, before and after domain adaptation, is shown in 
Table II. As demonstrated, we have achieved an impressive 
maximum of 18.22% improvement on the challenging 
dataset, proving, our model's efficiency on the domain-
shifted unlabeled waveform classification task. This novel 
approach is the first unsupervised Radar waveform domain 
adaptation successful solution in the known literature. 

Fig. 4. Classification performance for the Metric-VGG16 model 
with SA. At SNR = -24dB the classification accuracy is 89.79%. 
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TABLE II 
UNLABELED DOMAIN ADAPTATION RESULTS 

Waveform Classification Accuracy 

 Source ��  
Target (-12dB) 

Source � 
Target (-14dB) 

Source 
Only 81.91% 49.8% 

VGG16 + 
M-ADDA 89.04% (+7.13%) 68.02% (+18.22%) 
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