
1. INTRODUCTION

Satellite Doppler navigation, developed between 1957

Theoretical Bounds on and 1963 [1] at the Applied Physics Laboratory of Johns
Hopkins University, is presently in wide global use. At

Random E rro rs i n Satellite least three different satellite systems provide Doppler
navigation: 1) the U.S. Navy TRANSIT system, which is

Doppler Navigation also used extensively for civilian marine navigation,
geodesy and surveying; 2) the French ARGOS system, on
board the U.S. TIROS satellites, which is used for
location of unmanned environmental platforms; and 3) the
Search and Rescue satellites SARSAT and COSPAS,

NADAV LEVANON, Senior Member, IEEE which locate beacons transmitting distress messages.
Tel-Aviv University Analytical analysis of the system perfoimance is

hampered by the nonlinear nature of the problem. Solving
for the position is obtained iteratively by a least squares
technique which produces the position that minimizes the

Analytic expressions of the random errors in a satellite Doppler difference between the expected and the measured
navigation system are developed. The errors in the along-track and Doppler history. Most of the accuracy evaluations have
across-track coordinates are expressed as functions of the geometry been based on numerical simulation.
(range and angle), pass-length, and signal-to-noise ratio (SNR). Two questions are addressed by an analytical error

Such an analytic result becomes possible due to an explicit solution analysis of the system: 1) what is the dependence of the
to a simplified rectilinear model of the satellite pass over a flat random position error on the signal-to-noise ratio (SNR),

Earth. It is shown that the explicit solution performance in the and 2) what is the contribution of various sections and

presence of noise is identical to that of the iterative solution, used in lengths of the satellite track to the position accuracy?
the real navigation problem. Following the practice in TRANSIT [2] it is assumed that

Doppler cycle count, rather than Doppler frequency, is
being measured, and that the system estimates three
parameters: latitude, longitude, and the wavelength of the
transmitted navigation signal. In practice the third
unknown is the frequency of the oscillator in the
navigated platform, or the difference between it and the
satellite frequency. Choosing the wavelength of the
transmitted signal is a convenient representation of this
third unknown.

To be able to answer these questions analytically, a
simple model of the satellite navigation problem will be
developed, in which the navigation fix can be solved
explicitly. The explicit solution lends itself to an analytic
error analysis. The simple model and the explicit solution
cannot be used in real life because they do not readily
accept the many inputs and corrections that the iterative
solution can handle. However, the model is adequate for
error analysis. It is shown that the error analysis applies
to the iterative solution.

The error analysis is based on the Cramer-Rao lower
bound on the random error. It is a practical bound for this
application, because the Doppler navigation system
operates at a very high SNR and with very small errors.

This paper relies heavily on a previous paper [3] in
which a similar problem was treated. Derivations leading
to some of the results are outlined there and are not
repeated here.
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that of uniform rectilinear motion, at a fixed height, over R(2) = V2 sin2OIR (5)
a stationary flat Earth (Fig. 1). The a-priori knowledge of
the satellite orbit is, consequently, expressed by a given R(3) = 3 V3 sin20 cosO/R2 (6)

R(') = (3 V4/R3) sin20 (5 COS20 - 1) (7)

R(5) = (15 V5!R4) sin20 cosO (4 - 7 sin20). (8)

0¢>yV(cOW Using (3)-(6) and some simple geometry, it can be
CS th \\ e,ffi,shown that the three unknowns xo, yo, and X, are given

by

YO = V(2b21b, - - V(tk - to) (9)

xo = [-(b,b31b2 - 2)-22V2b1/b3 -h211]2 (10)
A X0 GROUND

- STATION X = 21TV(b2- 2b,b21b3)-½. (11)

Note that for three unknowns, three measurable range
derivatives were needed, R('), R 2), and R . (In a
narrowband Doppler system the range itself R(°) is not

Fig. 1. Relative geometry between satellite pass and ground station, in measurable.) If there were more unknowns, such as a
simplified model. frequency drift, then higher range derivatives would have

been required.
height h, a given constant velocity V, and a given One interesting result from (9) and (10) is the
satellite position along the track YO, at a given time to. coupling of an error in h to an error in the across-track
y will be the axis along the track, and x across the track. (x) coordinate of the fix, but not to an error in the along-
The fix is the position of the stationary ground station track coordinate. Users of satellite Doppler navigation are
relative to the satellite position at to, hence the fix is (xo, usually aware of the fact that entering an erroneous
yo). The position of the satellite along the track at time tk altitude input will cause an error mainly in longitude.
is given by Since the satellite orbit is nearly polar, an across-track

Yk =YO ± V(tk - t0). (1)
error is almost equivalent to an error in longitude.

Note that as plotted in Fig. 1, yo = 0 and Yk is negative. IV. THE MEASUREMENT SCHEME
This arbitrary but convenient choice does not affect the
generality of the analysis. In [3] it was shown that the optimal way to estimate

It should be pointed out that by giving up the Earth the coefficients of the phase polynomial is by using the
rotation, it becomes impossible to distinguish between "Doppler count" measurement. The optimal scheme
symmetrical fixes on either side of the orbit plane. requires continuous monitoring of the signal during the

entire observation period. The phase difference relative to
IlI. THE EXPLICIT SOLUTION the phase at a reference time (any time during the

observation period, and typically at its center or its
The explicit solution is based on parameterizing the beginning) is measured unambiguously by counting the

one-way signal phase by Taylor series expansion around number of Doppler cycles which occurred since the
the center of the observation period tk. reference time mark. (To guarantee enough cycles

between intervals, even at low or zero Doppler, the
0S(tk ± t) = bo ± b, t + b2t2 ± b3 t3 ± 0E(t) (2) practice is to operate the ground platform at some offset

where bo, b1, b2, and b3 are functions of tk, and where frequency from the satellite frequency.)
0Erepresents the remaining terms. To reduce the number of subscripts, let the reference

There is a simple relation between b1, b2, and b3, and time be at the middle of the observation period, tk. Then
the range rate and its two derivatives at the corresponding the phase difference at time ti is a function of the number
instant. The nth derivative of R with respect to time is of Doppler counts, ni, which occurred since tk,
given by 0(ti) - 0(tk) = 2 T nij. (12)

R(n) = X n! bn/2T, n = 1, 2, ... (3) Because of additive noise the received phase 0R(t) is
where X is the unknown wavelength. given by

With 0 and R as defined in Fig. 1 the range 0R(t) = 0s(t) + 0N(t) (13)
derivatives can be expressed as functions of 0, R, and V.
The first five derivatives are given below: where 0S(t) is the noise-free signal phase defined in (2),

and 0N(t) is a zero-mean, phase component resulting-() - Vcos0 (4) from the additive noise.
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Our task is to estimate the parameters bl, b2, and b3 P4 P2(3N2 + 3N - 1)/5 (23)
in (2), from 0R(t). The additive noise 0N(t) will be the
source of a random error. The remainder of the Taylor P6 = P2(3N4 + 6N3 - 3N + 1)/7. (24)
expansion 0E(t) will be the source of a bias error if
ignored. However, the two errors are not independent V. BIAS ERROR
quantities. If bl, b2, and b3 are estimated assuming
(contrary to fact) b4 = b5 = ... = 0, then the result is Using (17)-(19) in (9)-(1 1) yields a slightly biased
more biased but the sensitivity to noise is smaller than if estimate of the ground station position. The sensitivity to
the higher coefficients are considered. noise will decrease, but the bias error will increase, as

Due to the assumption of high SNR (small error), it is the length of the satellite pass (used for estimating bl, b2,
possible to circumvent that tradeoff. First, bl, b2, and b3 and b3) will increase. Utilizing an analysis similar to the
will be estimated while ignoring the higher coefficients. one given in [3, Sec. III] we obtain explicit expressions
These three parameters, slightly biased, allow solving for for the bias errors in yo and x0. The expressions are
a slightly biased fix, using (9), (10), and (1 1). Once the functions of sin2O, cos2O, and the total observation time
geometry is known, b4, b5, and the bias error that T, which are given by
resulted from ignoring them, can be calculated and sin20 = (I -bIb312b2)- (25)
subtracted, to yield an almost bias free fix. This scheme 2

was developed in [3]. cos20 = (1 - 2b2/1b 3)-' (26)
The least squares estimate of the coefficients bl, b2,

and b3 will be considerably simplified if the data set T = 2 N dt. (27)
consists of an odd number of equally spaced phase The symbol 0 is the same angle as defined in Fig. 1,
difference measurements namely, the angle between the velocity and the slant

d0j= 0R(ti) - 0R(tk) (14) range at the center of the data segment.
The two expressions for the bias errors are

where
dy = (1/504) (27sin20 - 32cos20

j i-k= 0 -k+- 1, +2 _, N (15)
- 20sn2 COS20)

and where
x (VT cosO)2/[y0 + V(tk - tO)] (28)

ti- 1 = dt. (16) and

In that case and ignoring b4, b5, , the estimated
coefficients for each k are given by dx = V3/7)cos2O (Scos2O - 1)

N + (5/36) (1 + 2cos20) (7sin2O - 4)]
bl = (dt)-' (P2P6-P24 (P6 jd0= X (VT sinO)2/4x0. (29)

N The unbiased estimates are therefore
p4 E j3 d0j) (17)

j -N YO unbiased = YO - dy (30)

N and
b2= (dt) 2(P0P4-P.2)Y (P0 3 j2d0a

j=-N X unbiased X- dx (31)
N (18) where yo and x0 are obtained from (9) and (10) using the

i'2 3 d01)(1) estimated bs, given by (17)-(19).

N To demonstrate the validity of the bias correction

= (dt) 3 (P2P6-2)P3' (P2 j3 scheme, a computer simulation was performed in which
jP= -N phase data was generated for a given geometry. (See (Al)

N and (A2) in Appendix A, regarding phase data.) This
-P4 3 j d0j) (19) noise-free phase data was then used to calculate the

j= -N biased and unbiased estimates of yo and x0. The results

where are given in Fig. 2. In this specific simulation the
parameters were: h = 1000 km, x0 = 1000 km, V = 10

* n (20) km/s, dt = 0.1 s, X = 1 m, andN = 100. The length
11M j N of the satellite orbit segment L which was used for each

j= -N
evaluation of the fix, is given by

or specifically
L = 2 N V dt (32)

Po = 2N + 1 (21)
which, in this case, is 200 km long. The quantity shown

P2 (2N3 + 3N2 ± N)/3 (22) on the horizontal axis is the displacement of the center of
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Fig. 2. Bias error before (upper pair) and after (lower pair) bias removal, in along-track (left pair) and across-track (right pair) coordinates.

VI. RANDOM ERROR
L since passing the point of closest approach (PCA). It is
given in units of 100 km. The quantity on the vertical To complete the demonstration that the explicit
scale is the bias error in km. The two upper curves show solution and the iterative solution give equal results, it is
the bias errors of yo and xo prior to bias correction. (Note necessary to compare their performance when the phase
that the scale for the bias error in xo is from - 5 to + 5 data is noisy. The computer simulation was modified and
km, while in all the other curves it is from - 2 to + 2 Gaussian noise was added to the generated phase data.
km.) The lower pair was obtained after the bias The same data, which will be termed "measured phase,"
correction. The almost complete removal of the bias was then used with both the iterative and the explicit
error, demonstrates the validity of the assumption that it solutions. Fig. 3 presents the results of the two solutions
was caused by ignoring b4 and b5, and the correctness of when the standard deviation of the phase noise (expressed
(28) and (29). in units of range) was oUR = 0.01 m. The remaining

It should be pointed out that the same noise-free parameters have not been changed. The definition of the
phase data was used to solve for the position, utilizing an horizontal axis is the same as in Fig. 2. The upper pair
iterative algorithm. As expected, there was no bias error, presents the errors of the iterative solution, and the lower
and the corresponding curves were perfect straight lines. pair, the explicit solution. The left pair presents the errors
The iterative algorithm is outlined in Appendix A. along the track, and the right pair, across the track.
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Fig. 3 reveals 1) the error level and pattern are the and cru and the actual random errors, demonstrates clearly
same in the iterative approach and in the explicit the validity of (33) and (34).
(derivatives) approach, 2) the errors in the across-track In the numerical examples above, the orbit segment
(x) direction are larger than in the along-track (y) used for each calculation of the fix was only 200 km.
direction, 3) the error in the y direction decreases as the This is a small segment compared to the prevailing
satellite pass segment, used for navigation, is closer to practice of using the entire available pass as one segment.
the PCA, and 4) in the x direction, the error decreases as However, equations (33) and (34) are general and any
the observation segment approaches the PCA, but near segment length (VT) can be used. By using a small
the PCA the sensitivity to noise peaks up again. orbital segment and shifting its displacement from the

Having demonstrated the identical performance of the PCA, we were able to show the relative importance of
iterative and explicit solutions in the presence of noise, different sections of the pass to the fix accuracy. From
we will now present an analytic expression for the Fig. 3 it is obvious that the most valuable orbital
random error effect in the explicit solution, and claim that segment, with regard to the along-track error, is the
it applies also to the iterative solution. segment centered at the PCA. On the other hand, an orbit

The random error analysis follows the analysis in segment somewhat off the PCA is the most valuable one
[3, Section V] and will not be repeated here. The final as far as across-track error is concerned.
expressions for the root-mean-square (RMS) errors in the To get a better insight on the behavior of cr. and ao,
y and x directions are plots of 10 log or, and 10 log or,, using (33) and (34), are

Cry (RIVT) {(5/4)sin40
given in Fig. 4. They were generated using the same

= (RIVT) {(15/4) sin4O parameters as the previous figures, except that it is
+ 12(y/VT)2 [3(1/sin20 - 2)2 - 71 assumed that 5N0X2/A2T4,rv2 = 1 m2, and the vertical

scale is in dB above 1 m. It is interesting to note that
+ 560(y/ VT)4/sin40}½h (5N0/A2T)½2 AI2r (33) with the given geometry the error in x is always larger

= 2(R21x0VTcosO) {(15/4) [sin20(2cos20 than the error in y, with the ratio of errors reaching a

maximum when the observation section is centered
- sin20)12 + (R/VT)2 [36 cos60 around the PCA. To show the effect of increasing the

+ 21 sin20(6COS40 - sin2COcS20 length of the data segment (VT), additional plots were

included which correspond to a data segment of 1000 km.
- sin40)] + 35(RIVT)4 (1 + 2cos20)2}½/ The above discussion has established that (33) and

x (5NO1A2T)'11 X/ 2,n. (34) (34) constitute a true measure of the random error

performance of a satellite Doppler navigation system, in

The distance from the center of the observation section to which the unknowns are the two position coordinates and
the PCA is y (=RcosO), No is the noise spectral level, the wavelength.
and A is the amplitude of the received signal. Note that
(No/A2T)` is the effective SNR. Recall that VT is the
length of the satellite pass during the observation period, VIl. CONCLUSIONS
and R is the range from the center of that pass section to
the navigating ground station. The main results of this paper are (33) and (34). They

In Appendix B it is shown that the relation between are analytic expressions of the random error in the along-
the SNR and the range noise (UR is given by track and across-track coordinates of the fix in a satellite

(N0/A2T)½ (2-uR/X) (2N)-½". (35) Doppler navigation system. The analytic results were
obtained for an explicit solution (9)-(1 1) to a rectilinear

The same (rR = 0.01 m, which was used for the model of the satellite motion over a flat Earth. It is
simulation in Fig. 3, was used in (35) to yield the SNR shown by simulation that the explicit solution
which was then used in (33) and (34). The results were performance, in the presence of noise, is identical to that
superimposed as dotted lines on the lower pair of curves of the iterative solution, and both agree with the analytic
in Fig. 3. The good agreement between the calculated cry error analysis.

n __ 7 __

'9 \V2VTm20-km
K VT~~~~=200kni

-1~~~~~~~~~~~~~~~~F
.2\ \ ° L- VT=IOOOkm

l D VT=lOOOkm & 4.L
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Fig. 4. Plot of (33) and (34) on a logarithmic vertical scale.
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An optimal phase measuring scheme was assumed,
which makes the result a lower bound on the random k+N
error. The Doppler count scheme used in modem | i=k N ik (0i 0ik)k (01 0 A)O
TRANSIT receivers is equivalent to the optimal phaseXA) (AxO
measurement, provided that the receiver bandwidth, prior A = (Oik 0k) (0k) (0ik-l Oik) (AIO)

to the phase sampling stage, is matched to the phase k0E . k(0ik 0ik) k(0j.)2
This paper deals with the common surface navigation

problem where there are three unknowns, two horizontal
coordinates and the exact radio frequency (or The iterative algorithm starts with a first guess of the
wavelength). Additional unknowns to be estimated, such vector of unknowns U. Equations (Al), (A2), and the
as a frequency drift, or an altitude, would make the first guess are used to obtain (for each k) 2N + 1 0is and
system more sensitive to noise. The exact effect can be a one 0k. Those are compared to the corresponding
subject of a further investigation. Another topic is an measured phase differences between the ti time marks and
analysis of a system which does not provide continuous tk. For each i the residual phase difference is defined as
signal; such a system must utilize Doppler frequency
rather than Doppler count. Intermittent signal is typical of eik = mimeasured - Ok measured - (0 - Ok). (A1)
systems in which the ground stations transmit and the Now define a vector E,
satellite receives. Since there are many ground stations,
each one must transmit at a very low duty cycle, to E = (E!, Et, E,)T (A12)
minimize interference at the satellite receiver. Both where
ARGOS and SARSAT operate in this mode, and their k+N
growing usage makes such an analysis worthwhile. E= (0ik' elk) (A 13)

i=k-N

APPENDIX A. THE ITERATIVE SOLUTION E= E (0i x eik) (A 14)

The appendix outlines the iterative algorithm against and
which the explicit (derivatives) solution was tested. The
algorithm follows a least-squares Newton approach. Note E i0 elk (A )
from Fig. 1 that the range Ri at time ti is given by Then the vector of the next iteration steps D

R? = x2 + h2 + LYO + V(ti - to)]2. (Al) D = (DV, DX, Dx) (A16)

The phase at that time is given by is given by the matrix equation

0, = 0, - 2irRi/X (A2) D = A` E (A 17)

where 0, is some arbitrary reference phase. and the next guess is
The vector of unknowns is U= U + D. (A18)

U = (yo xO, X)m. (A3) After each iteration the magnitude of the position step
The phase derivatives with respect to the three is compared to an acceptable position error dmax and if

unknowns are (D 2 + D 2) '2 d (A 1 9)
d0ildyo = - 2Trr[yO + V(t1 - to)]/XRi (A4) then the iterations are terminated, and the last guess is

dOildo = - 27rxo/XRi (A5) accepted as the result. Experience shows that with a
reasonable dmax, less than five iterations are usually

and necessary.

d0i/dX = 2'irRi/X2. (A6)

A Doppler count measuring system deals with phase APPENDIX B. THE RELATION BETWEEN SNR
differences 0i -0k, where tk was arbitrarily selected at AND UR
the center of the observation period. It will be assumed that the receiver additive noise is aDefine the difference partial derivatives, sample function from a zero-mean Gaussian random
0 = d0ildyo - d0kldyo (A7) process whose power is equally distributed over the

receiver frequency band of W hertz, centered about the
0k=d0,/dxo -d0k/dxco (A8) signal frequency.

0k= d0,/d - d0k!/dX (A9) Consider all Nyquist rate samples (dt= 1/W s) of theobserved phase difference. For high SNR conditions, the
and the matrix of partial derivatives noise component of the phase samples ON(t,) are

LEVANON: SATELLITE DOPPLER NAVIGATION RANDOM ERROR BOUNDS 815



statistically uncorrelated zero-mean random variables Equations (B 1)-(B4) yield the relation between the
whose variance is given by effective SNR and the equivalent range noise CTR,

E{0N(ti)} = WN0/A2. (Bl) NO/A2T = (27ro`R/X)2 (2N)Y. (B5)

Here N0/2 is the (two-sided) noise spectral level and Note that if there were fewer samples during T
A is the amplitude of the received signal. The right hand (smaller N), this would have implied longer intervals dt,
side of (B 1) is the ratio of the average noise power to the and therefore narrower receiver bandwidth W. Then, from
signal power, prior to the phase sampling operation. (Bl) and (B4), the equivalent range noise of each

Multiplying and dividing by W yield measurement would have decreased.

NO/A2T = (NOW/A2) (WT)- 1. (B2) In other words, the performance of the measurement
scheme is independent of the number 2N of the dt

The Nyquist rate and (27) yield intervals, and depends only on their product, the total
observation time T, provided that the receiver bandwidth

W = lIdt = 2N/T (B3) is kept matched to the phase sampling interval (W= 1/

and (3) gives dt). However, the algorithm outlined in (17)-(19)
becomes somewhat inferior to the optimal estimator if N

orR = X uo/21T. (B4) is chosen too small.
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