
Some Results From Utilizing Doppler
Derivatives

Abstract

Explicit expressions of range, velocity, and the angle between
them, as functions of a radar Doppler shift and its first two
derivatives are given.

I. Analysis

The Doppler shift as a function of time of a static
radar return from a moving target (or vice versa) is con-
sidered. The target is assumed to be moving in a straight
line, at a constant velocity v. Usually, the first two
terms of the Taylor series are given [1] . The first three
terms of Taylor's expansion of the Doppler shift,f(t),
about t = 0, are

f(t) (2v/X) cos0o -(2v2t/XRo) sin2 0o

-(3v3t2/XR ) cos 00 sin2 00 (1)

where Ro is the range, 00 is the angle between the range
and the velocity vectors, both at t = 0, X is the radar wave-
length.

From (1) we get

f4f(t) It=0 = (2v/X) cosOo (2)

f d[f(t)] /dt It -(2v2 /XRo) sin2 00 (3)

f Ad2 lf(t)] /dt2 It- (6v3/XR) cos 00 sin2 00 . (4)

Equations (2)-(4) are in agreement with Barton [2] when
the proper substitutions are made.

In (2), (3), and (4), f, f, and f are given as functions
of RO, v, and 00. It can easily be shown that the latter
can be explicitly obtained as functions of the former,
namely

Ro -- (3/2)X (ffIf) (5)

f 1 0 0 - -O)0

_/ 3/2 2-1/2 A(0 * (8)

12/2 1/2 -1 1/2 f(2r)

Four measurements yield

f 1 0 ~~0 0

T_rr-1 1/6 3 -3/2 1/3

L Tr2 /2 1 -5/2 2 -1/2

f(O)

f(r)

f(2T)

f(3T)

(9)

The estimation filters given in (8) and (9) are based
on Taylor expansions.. Another approach is based on a
second-order polynomial, constructed from linear com-
bination of discrete Legendre polynomials, which best
fits the data vector in the sense of least squares [3]. The
Legendre polynomials for three measurements yield a
filter identical to (8), The filter for four measurements
is given in (10).

f 1

r2 = (1/20) -21

' r2/2 L 5

ff0)

f(T)

f(2r)

f(3T)

3 -3 1

13 17-9

-5 -55 j

(10)

v (X/2) (f2 _3 2fl)/2

6o -cos'1 (1

(6)
3/ 2/ff) /

While obvious, it may be helpful to add here that the
derivatives could be obtained from three or more equally-
space Doppler shift measurements f(O), f(r), f(2r), ...

While (10) is more efficient in the sense of least squares,
7) (9) is considerably better, in our application, with regard

to systematic error. Equation (9) will therefore be uti-
lized in the remaining of this work.

II. Errors and Applications

Three measurements yield The dependence of the random error in the estimation e
of RO, v, and 00, on the random error in the measurements
of the Doppler frequencies, is inversely related to the in-
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terval r (see Appenidixes A and B). Furtlhermore, the esti-
mnation error of the Doppler frequency is itself inversely
dependent on the frequency measuring period [4} , which
has to be smaller than -. Thus the randoml error strongly
decreases as r increases. There is, lowever, a limit on T,
dictated by the systematic erroi.

The systematic error is due partly to the approximations
in tile truncated expansions used in (8), (9), or (10).
Additional systemnatic error m-ay be the result of a wrong
model, e.g., if the true motioin is not along a straight
line or not at a constant velocity. Both systematic errors
increase with w.

In considering applications of the explicit algorithm
for obtaining RO, v, and 00. as expressed in (5)-(7), this
algorithm has to be compared to iterative algorithms
which are normally used. Iterative algorithms can uti-
lize more complicated motion models, and a longer sec-
tion of the target pass, with miiany more measurements.
The "redundant" measurements allow lower signal-to-
noise ratio (SNR) during each frequency measurement.
In such low SNR applications our explicit algorithm can
probably serve only as a fast mean to obtain an initial
guess for a more elaborate iterative algorithm.

Our explicit algorithm can stand alone in short range
(high SNR) applications, e.g., muzzle velocity radar
(angle independent). In such applications the high SNR
can reduce random error despite the short frequency
measuremnent period, which is necessary in order to avoid
systematic error. In Appendix B we demonstrate the
systematic error in a numerical example.

The Appendixes show that the explicit algorithm is
both simple and, in high SNR applications, sufficiently
accurate. It can thus yield accurate velocity without
a priori knowledge of the angle.

DR0/af(o) av/af(o) aO0 Daf(o)

D =

aRo/af(T) Dv/af(T) aDOD/af(T)

DRo/Daf(2T) av/af(2T) a0o/Daf(2

aRo0af(3T) Dv/f(3T) a0O af(3T)

Using (A3) we get the error convariance matrix of
S from the error covariance matrix of F

cov(S) = DT cov(F) D

(A4)

(A5)

It is reasonable to asume that

cov(F) = o2 lfll (A6)

where I is the 4 X 4 identity matrix, and of is the root-
mean square (rms) error in the Doppler shift measurements.

Using range as an example, we define

DR = [DRO /af(o), aR/ODf(T), aRo laf(2T), aRo /af(3rT)] T

(A7)

Thus (A5), (A6), and (A7) yield

aR= G,DR DR)2

where 0R is the rms error in range estimation. Similar
equations can be written for a. and uo.

From (5) and (9) it can be shown that

We define the measurement vector

F = jf(),f?J(T), f(2r), f(3-r)]

and the parameter vector

TS= (Ro, v, Oo)

If our estimate S is in the neighborhood of the true
value S, we can make the approximation

S=S+DT(F-F)

(Al)
DR = (Xf/4Tf

(A2)
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f Ir/f
(A3)

where D is a 4 X 3 matrix of partial derivatives
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If uf, the rms frequency error, is known, then (A8) and
(A9) provide the rms of the random range error. Simi-
larly, using (AI0), we can get the rms of the random
velocity error.

Appendix B

Systematic Errors and a Numerical Example

The systematic error does not yield itself to an ana-
lytic analysis as the random error does. Therefore, we
use the following numerical example, which may cor-
respond to a muzzle velocity radar

S = (10 m, 200 m/s, 150o)T, X = 0.02 m.

The true (measured) Doppler shifts were calculated
using equations of motion which included linear accel-
eration, a.

TABLE I

Calculated Velocity and G /a0 for Various T and a (True Velocity
is 200 m/s)

v

7 v in (m/s) Uv/

(5) a = 0 a =-20 (m/s ) [(m/s)/HzJ

0.005 201.63 200.58 0.95
0.01 204.52 203.36 0.15
0.1 226.30 221.88 0.014

(A 1 0)
The rms random velocity error was also calculated

for this numerical example using (A10). It appears in the
last column of Table I. At r = 0.01 s, for example, if the
SNR is high enough to limit af to 10 Hz (at a Doppler
frequency of 17 kHz and a measuring period shorter
than 10 ms), then the rms random velocity error will
be 1.5 m/s, which is smaller than the corresponding
systematic error. The preceding example was repeated
with the filter described in (10). With - = 0.01, the
systematic error increased from 4.52 m/s to 17.75 m/s,
while the random error dropped from 1.5 m/s to 0.27
m/s (assuming of = 10 Hz).
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f(t) = [2v(t)/X] cos [0(t)]

v(t) = vo + at

sin [180°-0 (t)] = fRo/R(t)] sin Oo

R(t) = [Ro + (vot+at2 /2)2

-2(vot + at2/2)Ro cos o0 ] /2 .

The velocity estimation was calculated using (9) and
(6), for various -, with and without deceleration of 20
m/s2. The results appear in Table I.
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changed). On the other hand, the additional error due
to the deceleration increases at the same ratio in which
Ro is increased.
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Model Error and the Direction-Finder Problem

Abstract

The error introduced into many direction-finder (DF) algorithms
by the use of projections is discussed. Upper bounds for this

error are calculated and formulas for calculating these bounds are

extended to the case of nonconformal transformations.
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