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Abstract 

Sequences with the property of perfect periodic autocorrelation are used in various fields such as communication and 
radar systems. Various methods were introduced to construct such sequences. Most of these methods concentrated on 
binary or N-phase sequences. In this paper two methods to construct general phase sequences are introduced. The 
methods are based upon the properties of the Fourier transform of perfect periodic autocorrelation sequences. The 
sensitivity of these codes to errors is also elaborated. 

Zusammenfassung 

Folgen mit der Eigenschaft einer vollkommen periodischen Autokorrelation verwendet man in verschiedenen 
Gebieten wie bei Kommunikations- und Radarsystemen. Verschiedene Verfahren zur Konstruktion solcher Folgen 
wurden eingefiihrt. Die meisten solchen Techniken beziehen sich auf bin&e oder N-Phasen-Sequenzen. In diesem Beitrag 
werden zwei Methoden zur Konstruktion von Sequenzen allgemeiner Phasen eingefiihrt. Die Grundlage der Verfahren 
bilden die Eigenschaften der Fouriertransformierten von Folgen mit perfekt periodischer Autokorrelation. Auch die 
Fehlerempfindlichkeit so entworfener Codes wird herausgearbeitet. 

On fait usage de skquences d’autocorrblation pkriodiques parfaites dans divers domaines tels que les tClCcommunica- 
tions et le radar. II existe plusieurs mCthodes de formation de skquences de ce genre, mais le plupart sont limittes ?I des 
stquences binaires ou N-phases. Cet article introduit deux methodes de g&&ation qui conviennent a la formation de 
sCquences de phases g&n&ales. Les mCthodes sont basks sur les caract&istiques de la transformation de Fourier des 
stquences d’autocorrilation parfaites. On traite aussi la sensibilitt: de la fonction d’autocorr6lation aux erreurs de 
phase. 
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1. Introduction 

Let u(n), at = 0, . . , M - 1, denote a length M se- 
quence of complex numbers. If the cyclic (periodic) 
autocorrelation of this sequence, 

a uniform absolute value of the DFT of the original 
sequence. Since we require that both the sequence 
and its DFT are uniform, it is natural to look for an 
eigenfunction of the Fourier operator as a candi- 
date code (an ‘eigencode’). 

M-l The Fourier operator will be translated to its 

R”(k) = 1 u(n)u*(n + k), matrix representation (Butler matrix) 
n=O 

with ti(n + k) = u[(n + k) mod M], 

has the property that 

(1) -j2n(kl’M), k,l = 0, . . . , M - 1. (4) 

R,(k) = E,& mod MT (2) 

where bk is the Kriinecker delta, and E, the energy 
in a single period, then this sequence is said to be 
a perfect cyclic autocorrelation (PCA) sequence. 

The set of matrix eigenvalues, as seen in Appendix 
A, is 

Sequences with such a property have been 
known for a long time, the earliest of which were 
described by Frank in [4] and Chu [3], who intro- 
duced sequences which are a sampled version of 
either a linear frequency modulation signal or 
a stepped frequency signal. A generation method 
for b&phase sequences has been recently described 
in [l] and [6]. In [9] PCA sequences with non- 
uniform amplitude, thus having a degraded effici- 
ency, are listed. Some of the codes properties are 
given in [7] and [S], and a method which could 
generate a code out of two known ones is shown. 
N-phase sequences are presented in [2]. 

Let Ui denote an eigenvector of BY, which corres- 
ponds to the eigenvalue li. It is straightforward 
that 

vi is also an eigenvector of B% corresponding to the 
eigenvalue Ai’. Since an eigenvalue of BM is one of 
the set { 1, j, - 1, - j} the eigenvalues of Bh are 
either + 1, which corresponds to the eigenvalues 
{ 1, - l} of B,, or - 1, which corresponds to the 
(j, - j} set of BM eigenvalues. 

One of the important properties of a PCA se- 
quence is the fact that its Fourier transform is of 
uniform magnitude (see [9]). Using this property, 
two alternative methods for PCA sequence genera- 
tion are presented hereunder. These methods are 
designed to produce a uniform amplitude signal, 
but with no restrictions set on the phase sequence. 
Thus the goal of the generation method is to find 
a set of phases (&>, n = 1, . . . , M, such that the 
sequence given by 

u(n) = ejsn (3) 

is a PCA sequence. 

Using this relation it can be shown, with the 
structure of B$, as shown in Appendix A, that for 
Ai= +j 

1 uil \ / uil \ 

BhVi=(i JN~J\~~~= -\::I, 
I 

which results in the following equation set: 

Uil = - Uil * Vil=O, 
(6) 

vik= -Vi,M-k+* Vk=2 ,..., y 

[ 1 
, 

where [.I denotes the integer part function. 

2. The eigenvector method 

The requirement of a uniform spectral density 
function leads to an equivalent requirement for 

The fact that the first term is inherently zero 
prohibits the use of those eigenvectors as eigen- 
codes, as described in this paper, since for an eigen- 
code all the eigenvectors which correspond to a 
certain eigenvalue must form a base that spans a 
subspace in which a vector with all its terms of 
equal magnitude can be found. 
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As for & = + 1, then then N,, = M - [(M - 1)/2], which gives 

(11) 

following 

vk,,, = vksN_,,,+2 vm = 2, . . . . 7 [ 1 
. (7) 

Namely the eigenvectors are symmetric around the 
[(M - 1)/2]th term (except for the first term). 

Finding the eigenvectors corresponding to eigen- 
values 1 and - 1 is quite a straightforward proced- 
ure. However, since those are, in general, multiple- 
order eigenvalues, a set of vectors will be found for 
each eigenvalue, probably none of them uniform in 
magnitude. Those vectors span the subspace of all 
eigenvectors corresponding to 1 (or - 1). A linear 
combination of them is to be found, to produce 
a uniform magnitude vector, which is the required 
eigencode. 

Let the required vector have the following phase 
sequence: 

0 = (w92, *.. ,b}, (8) 

where the first term was set, without loss of general- 
ity, to 0. Let the column vector eje represent 
a term-by-term exponential of 8: 

ej@ = { 1, ejB’, . . . , ej@M}. (9) 

Let the matrix VI be the matrix containing all the 
eigenvectors corresponding to eigenvalue 1, and the 
column vector IZ be the vector of the coefficients of 
the required linear combination of the vectors in V1. 
Then, we have to solve the following equation set: 

V,a = ejs 

with the unknowns a and 8. 

(LO) 

Due to the symmetry expressed in Eq. (7), the last 
[(M - 1)/2] equations are identical to the 
[(M - 1)/2] equations, from the second one down. 
The number of independent complex equations is 

When counting unknowns, it should be noted that 
there are two types of unknowns: the phases and 
the vector coefficients. As for the number of un- 
known phases, No, it is equal to the number of 
equations, except for ol, which have already been 
set to 0, namely 

NH=Neq-1. (12) 

The number of unknowns and the number of inde- 
pendent equations depend upon the sequence 
length, M, as summarized in Table 1. 

The number of coefficients in u, N,, is dependent 
upon the multiplicity of the respective eigenvalues. 
According to Eq. (A.1 l), the multiplicity of the + 1 

Table 1 
Number of equations (IV,,) and unknowns (N,) for the + 1 and 
- 1 eigenvalues 

M N, N,, NU 

+ 1 eigenvalue 

Omod4 
M-t4 M 
- 

4 z 
M+2 

lmod4 
M+3 M-l 
- - 

4 2 
M+l 

2mod4 
Mf2 M 
- 

4 T 
M+l 

3mod4 
Mfl M-l 
- - M 

4 2 

- 1 eigenualue 

M 
Omod4 

M 

-T T 
M 

lmod4 
M-l M-l 
- - M-l 

4 2 

2mod4 
Mf2 M 
- 

4 7 
M+I 

3mod4 
M+l M-l 
- - 

4 2 
M 

- 
2N,, 

M+2 

Mfl 

Mf2 

M+l 

Mf2 

Mtl 

Mf2 

Mfl 
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eigenvalue is given by N, = [(M + 4)/4], whereas 
the multiplicity of the - 1 eigenvalue is given by 
N, = [(M + 2)/4]. 

Table 1 sums up the number of equations and 
unknowns for eigenvalues +l and - 1 and for 
various cases of M. The count is made for real 
variables and equations, so it would be possible 
to add together the number of real phases and 
the number of complex valued u vector coeffi- 
cients. 

As shown in the table, the number of unknowns 
is equal to the number of equations, only in 2 out of 
the 8 cases presented. Only in these cases is it 
possible to solve Eq. (10) analytically. In the other 
cases, the number of equations exceeds that of the 
unknowns, and solution is possible only in the 
least-squares sense. It should be noted however 
that there is no proof that such a solution does 
exist. 

Table 3 in Appendix B presents some of the 
solutions found for various M’s. The equations 
were solved numerically using the steepest gradient 
method. M = 37 was the longest code searched, 
although longer codes may probably exist. The 
program could not reach a solution for M = 8,9 
and 16. 

It is interesting to see that the procedure de- 
scribed reached sometimes codes using an alphabet 
of only 2 (for M = 4), 3 (for M = 5,13) and 5 (for 
M = 17) symbols (phases). Since the number of 
free phases is [(M + 1)/2], it is quite obvious for 
low-order M’s but for large M’s it is not straight- 
forward. There is no special reason for this pheno- 
menon, except for the fact that such codes do 
exist. 

3. The iteration method 

Another approach is of a more heuristic nature. 
It is an iterative method. The procedure is de- 
scribed as follows: 
(1) In the first iteration, take a random sequence of 

numbers on the unit circle in the complex 
plane: 

uo = ejQo(“), {co(n)> I “EO, . ..M- 1. 

(2) 

(3) 

(4) 

In the ith iteration, perform its discrete Fourier 
transform, and present it in its polar form: 

M-l 

Ui(k) = F(Ui) = 1 Ui(TI)Cj2”‘“k’M’ 

= pi(k)d”t’k’. k “0, . . . . M - 1. 

Check whether the resulting amplitude is uni- 
form by calculating, for example, the standard 
deviation of the magnitude normalized to its 
average over k, pi, and comparing to 
a predefined limit, Ed: 

STD !!@ Q E,. 
k [ 1 Pi 

If the condition is met, the algorithm is stopped. 

If the condition is not met, repeat steps 2-4, 
with the sequence 

ui+l(n) = ejb,@), k = 0, . . . ,M - 1. 

This procedure is similar to a well-known method 
of extracting the eigenvalues and eigenvectors of 
a matrix, but here the algorithm tries to force a uni- 
form amplitude solution. Empirically it was found 
that the procedure converges, but with a constantly 
decreasing rate. In this method the exact code is not 
reached and in this sense those codes are called here 
NPCA for nearly perfect cyclic autocorrelation. 

A search was performed for various values of M. 
For each M it was possible to find several se- 
quences. The criterion for stopping the iterations 
was taken as E, = 2 x 10p4; however, the procedure 
stopped after 1000 iterations in case the limit was 
not reached. Table 4 in Appendix B shows a sample 
code for each M that was searched, with the stan- 
dard deviation of the spectrum of the code. 

4. Error sensitivity 

The actual sidelobe level achieved, when a PCA 
based signal is used within a system, depends upon 
the accuracy in code generation. We shall not refer 
here to Doppler errors, which are analysed in [S]. 
A distinction shall be made here between code error 
sensitivity, which is the sensitivity of the autocorre- 
lation sidelobe level to errors in the sequence terms, 
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and spectrum error sensitivity, which is the sensiti- 
vity of the sidelobe level to a deviation of the 
spectrum magnitude from unity. This sensitivity is 
used to set the limit for stopping the iterations in 
the algorithm previously described. 

4. I. Code error sensitivity 

The model used for the analysis of code error 
sensitivity is as follows: A code generator, designed 
for the sequence u(n), n = 0, . . . , M, generates an 
erroneous version of the sequence, ii(n), given by 

ii(n) = u(n)[l + e(n)], (13) 

where e(n) is a complex stochastic process. Both 
components of the error process e(n), e,(n) = 
Re{e(n)) and ei(n) = Im{e(n)}, are assumed to be 
stationary, white, independent zero mean pro- 
cesses, an assumption most commonly used. We 
shall further denote 

E{ez} = a;, 

E{e’} = of, 

a? + a,2 = cr2. 

On transmission, a single period of C(n) is recorded 
and used to continuously modulate the transmitted 
signal. The received signal is correlated with that 
recorded period. 

The resulting autocorrelation function is given 

by 
M-l 

R,(k) = c qn)i?‘*(n + k) 

n=O 

M-l 

= .zo u(fW*(n + WC1 + 441 

x [l + e*(n + k)]. (14) 

Assuming ergodicity, we shall compute the statis- 
tical ensemble expected value and variance in order 
to evaluate the mean and sidelobe level in the time 
domain. 

The expected value of the autocorrelation func- 
tion is then 

E {&k)} 
M-l 

= R,(k) + 1 u(n)u*(n + k)[o,’ + of]&, 
n=O 

To compute the variance, one has to compute 

EU%(k)12} 

i 

M-l M-l 

= E c 1 u(n)ti*(n + k)u*(m)u(m + k) 
n=O m=o 

x [l + e(n)][l + e*(n + k)] 

x [l + e*(m)][l + e(m + k)] 
I 

. (16) 

Some of the cross terms cannot be directly evalu- 
ated; however, a limit can be found to yield 

Var{I%(k)I} = E{lk(k)12} - E2{l&Wl) 

~ 

i 

Mc2(02 + 2) + 2Mlo: - ~$1, k #OmodM, 

4Mof + M(K - l)(o: + of), k = 0 mod M, 

(17) 

with K the fourth moment of the distribution of e, 
and ei. The third moment of that distribution was 
assumed to be zero. 

The rms sidelobe level, which is the figure of 
merit for error sensitivity, is given by 

SLL =~VarilR.(Wh~o 

< 
02(02 + 2) + 210; - 021 

M (18) 

For the special case where the errors in both axes 
are small and of a similar order of magnitude, 
(T, ~ (Ti<< 1, 

SLL < 
o2(a2 + 2) 2a2 

M 
X- 

M’ 

Fig. 1 shows the RMS sidelobe level (in dB) as 
a function of phase error standard deviation (in 
degrees). The graph shown is a result of simulations 
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1 

Fig. 1. RMS sidelobe level as a function of random phase error standard deviation for various sequence lengths. 

(250 runs per data point) performed in adding ran- 
dom phase error to PCA sequences of various 
lengths. From the point of view of SLL, no differ- 
ence can be observed between these codes and Chu 
codes [3], or shift register sequence codes [6]. 

Fig. 2 shows a comparison between the theoret- 
ical limit of Eq. (16) and simulation results of the 
autocorrelation of a PCA sequence of length 31. 
Fig. 2 shows as well the peak sidelobe level as 
a function of the phase error. The peak sidelobe is 
some 10 dB higher than the RMS level. 

4.2. Spectrum magnitude error 

In order to set the limit in step 2 of the iteration 
method described above, it is essential to determine 
the sidelobe level of the autocorrelation as a func- 
tion of the deviation of the spectrum from unity. 
This figure of merit is also necessary in determining 
the requirements for spectral in-band uniformity of 
a system in which such a sequence is implemented. 

Let the code found be {u(k) = ejgb}lk=O, ...,M-l. 
Its normalized spectrum magnitude ) U(l)l’ will be 

modelled by a constant plus an error, el: 

IU(l)l’ = 1 + e,. (20) 

The error eI will be assumed to be a white stochastic 
process with zero mean and standard deviation 
_ 0 (which is eventually the limit, E,, set in the 
iteration process). In order to make the calculation 
simpler we shall further assume ergodicity and re- 
place the time averages by the statistical expected 
value. 

The autocorrelation of the code will be given 

by 

R,(n) = F-‘{1U(1)(2} = k”$’ IU(1)12ej2n(n’iM), 
I-O 

n = 0, . . ..M - 1. (21) 

Its average value is 

E{R(n)} = h”tl E{ I U112) ej2n(n1'M) = c&o, (22) 
I-O 

with 6 the Kronecker delta. 
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Fig. 2. Comparison between RMS sidelobe level, peak sidelobe level and the theoretical limit of a PCA code. 

The variance of the a,utocorrelation function is 

0 
=- 

M’ 
(23) 

The results of both code error sensitivity for 
random phase errors and the spectrum error sensi- 
tivity are quite intuitive. As the sidelobe level at 
a particular point is a sum of M almost indepen- 
dent variabies, each with standard deviation 0, it 
gives, in first-order approximation, a sidelobe of 

OIJM. 

5. Conclusion 

New methods for the generation of PCA se- 
quences were introduced. These methods produce 

multiphase sequences for virtually any required 
length. Some example sequences are presented as 
well. The PCA code sensitivity to errors (both code 
error and spectrum error) is also studied. 

Appendix A. Properties of the Butler matrix 

A. 1. Dejnition 

The Butler matrix appears widely within the con- 
text of signal analysis. The Butler matrix of order 
M is defined as 

where 

Wnr =e-j(2n’M), i,k = (0, . . . . M - 1). (A-1) 

Some of its properties will be given hereunder. 
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A.2. General properties 

By definition the Butler matrix is a symmetric 
matrix. It can also be shown that it is unitary: 

1 M-l 
B,B;l,(i,k) = i c WE Wimk 

m-0 

with 6ik is the Kronecker delta, and hence 

BuB; = Iw, 64.2) 

where ZM is the unity matrix of dimension M x M. 
This property is another representation of the fact 
that the inverse Fourier transform is the conjugate 
of the forward Fourier transform. 

A.3. The powers of the Butler matrix 

The powers of B, are 

B&(i, k) = $ M$’ WF WGk 
WI-0 

= i rti e-j(WM)m(i+k) 

if i + k =0 or i + k = M, 

= 0 i 

1 

elsewhere. 

(A.3) 

The resulting matrix has the following structure: 

loo... 0 
ooo... 1 

B2= : 0 0 0.. 10 M = . . . . . . . (iL :I:)’ 

, . . . . . . 

0 1 0 . o/ . * 

where .J,,_ 1 is the (M - 1) x (M - 1) matrix with 
the secondary diagonal all ones and Oy _ 1 denotes 
an all-zero column vector of size M - 1. This prop- 
erty represents the fact that applying the Fourier 
transform twice leads to a time reversal operation. 

With a similar block decomposition applied to 
the Bu matrix, and lw_ 1 denotes an all-one vector, 

one can write 

Bi = (0,1_r “55::) (I:_r I$&:) 

( 

1 IL-1 
= lM_i wp-i’“l$‘l > 

= W,-ikl$: = B-’ M? 

yielding directly 

B”M = B$BM = Ihl. 

(A.4) 

(A.5) 

A.4. Butler matrix eigenvalues 

Let f(n) denote the polynomial 

.f@) = A4 - 1. (A.6) 

From (AS), it is clear that f(B,) = 0; thus the 
eigenvalues of Bier are contained within the set 
of the roots of f(n). Namely the eigenvalues of 
BM are { + 1, - 1, + j, - j} with multiplicities 
{ml,m_ l,mj,m_j}, respectively. TO find the multi- 
plicities the following two properties shall be used: 

(1) The trace of the Butler matrix, which is the 
sum of the eigenvalues, is given by the Gauss sums 
[lo], written here in a more compact form: 

M-l 

izo jLi = tr { BM} = & r$: e -j(2n/M)“z 

[ 1 -j, M =Omod4 

1, MElmod 1 +j” = 
0, ME2mod4 

= - (A.7) 
l+j’ 

M=3mod4 

(2) If 1i is an eigenvalue of BY, then 3L? is an 
eigenvalue of B&, see Eq. (6) above. The eigenvalues 
of B& are then { 1, - l), with multiplicities 
(ml + m_ l,mj + m-j}, respectively. The eigen- 
values of B& can be directly calculated, by finding 
the roots of the characteristic polynomial of B&: 

j,U,+, - B&l = 0. (A.@ 

Using (A.3), it can be shown that by subsequent 
decomposition, the determination on the left-hand 
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side of Eq. (A.8) can be reduced to Equations (i) and (ii) in (A.lO) are the result of 

llln, - B&l = (;1- l)lLZ&1 - JM_ 11 
breaking Eq. (A.7) into its real and imaginary part. 
Equations (iii) and (iv) are the direct result of (A.9). 

(A - 1)2(L2 - 1)“/2-1, M even, The solution of (A.lO) is straightforward: 

= i (I. - l)(,I’ - 1)‘“-1)‘2, M odd, 

and the equations to be solved: 

(2 - p+l(A + p-1 = 0, M even, 

(,I - l)‘“+ 1)‘2(,1 + 1)‘“-1)‘2 = 0, M odd. 
(A.9) mj = [~I, m-j = [~I. (A.ll) 

Thus the multiplicity values {mi)liz( + 1, f j) are con- 
strained by the following: 

it follows directly from Eq. (A.ll) that the set of 
eigenvalues of the Butler matrix of order M is given 

(9 

(ii) 

(iii) 

(iv) 

1, M zOmod4, 

1, M E 1 mod4, 

ME2mod4, 

0, Mz3mod4, 

I 1, M sOmod4, 

0, Mzlmod4, 
0, Mz2mod4, 

1, Mz3mod4, 

M 
ml+m_l= - [I 2 +L 

M 
mj + m-j = - - 1. [I 2 

Appendix B 

Table 3 

List of eigencodes 

(A.12) 

Table 2 shows the eigenvalues of Butler matrices 
of orders 1 to 6 and demonstrates (A.12). 

(A.lO) 

Table 2 

List of eigenvalues for various-order Butler matrices 

M Eigenvalues 

1 1 

2 1, -1 

3 1, -1, -j 

4 1, -1, -j, 1 

5 l, - l, -j, 1, j 

6 I. - 1, -j, 1. j, - 1 

M h (dew=) 

4 0, 0, 180, 0 

0, -12, 72, 72, -12 

12(l) 0, -30, -60,90, 120, -30, 180, -30, 120,90, -60, -30 

(2) 0, 30.3, 61.2, -97.6, -76.3, 134.5, -15.1, 134.5, -76.3, -97.6, 61.2, 30.3 

13 0, 77.5, -71.5, 71.5, 77.5, -77.5, -71.5, -77.5, -77.5, 77.5, 77.5, -77.5, 77.5 

17 0, 121.2, -121.2, 24.7, 121.2, 24.7, -24.1. -24.7, -121.2, -121.2, -24.7, -24.7, 24.1, 121.2, 24.7, -121.2, 121.2 

37 0, -77.0, -32.7, -113.4, -46.4,75.1,145.2,4.0, 102.9, -112.0,36.7, -62.0,176.2, -165.4,84.8,70.3, -0.3, -68.2,76.1,76.1, 

-68.2, 0.3, 70.3, 84.8, -165.4, 176.2, -62.0, 36.7, -112.0, 102.9,4.0, 145.2, 75.1, -46.4, -113.4, -32.7, -11.0 
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Table 4 

List of NPCA codes 
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M & (degrees) El’ 

31 

50 

100 

128 

0, 225.03, 0.01, 45.02 1.670 x 1O-4 
0, 72, 72.01, 0.01, 216.01 1.386 x lo-“ 

0, 209.99, 120, 90.01, 120.01, 210.01 1.574 x 1o-4 
0, 154.3, 87.2, 102.9, 35.7, 190, 15.7 1.955 x 1o-4 

0, -4.9, 170.1, 19.5, 80.1, 175.1, 90, -29.4 1.490 x 1o-4 

0, 31.6, 27.6, 200, 83, 243, -41, 107.6, 71.6 1.764 x 10m4 

0, 154.8, -175.4, -31.4, 179.4, 99.4, 132.7, -167.7, 125.7, -136.3, 3.8, -112.2, 106.5, 60.5, 99.0, 

-20.6 9.8 x lo-* 

0, -124.6, -35.8, -206.6, -212.6, 72.4, -105.5, 120.4, 59.4, -124.8, -95.2, -100.3, -182.7, 

-164.6, 1.82, -81.7, -124.4, -55.4, -218.9, -150.4, -133.8, 14.2, -100.5, 86.9, 102.2, 102.0, 

-229.2, -206.2, -61.7, 15.8, -179.2 9.96 x 1O-5 

0, 163.3,29.2,4.6,2.2,258,241.4, 252.3, 172.3, 91.4, 147.5, -50.6, 282,90.9, -54.7, 70.2, 78,91.1, 140.9, 

172.4, -54.8, 154.7, 131.6, -18.1, 273.8, 217.1, 300.5, 70, 176.7, -39.8, 233.5, 37, 108.6, 212.6, 49.6, 

199.3, -15.1, 33.4, 38.9, 91.1, -29.2, 122.8, 24.4, 206, 39, 13.2, -8.7 121.3 127.8 58.5 4.6 x 10m3 

0,48.1,255.3, 16.9, -17.3, -4.1, 119.4,66.3, 86.5,300.3, 268.1, -32.2.28.8, 305.7, -33.2, 137.7,249.9, 

107.2, 194.5,284.3, -33.1, 13.7, 189.8,288.4, 71.5,279.1,95.5,46.5,217.1,267.6, 306.9, 128.8, 36.4,206.4, 

69.5, 73.1, -24.8, 231.3, -2.3, 199.7, 225.2, 190.5, 210.4, 169.4, 158.8, -17.20, 304.2, 140.7, 66, 291.2, 

127.2,229, 148.1,94.9, 183,311,226.2, 154.9,238.9, -36.3, 16.4,290.1, 158.6,3.1,0.5, 105, 116.8, -42.3, 

291.4,308.2, -11.6,301.7,254.5, 192.2,200.1, -15,241.1,53.2,299.4, 158.2, 100.7, 152.7,47.4,4, -11.6, 

146.2, 202.5, 55.7, 95.9, 295, 160.6, 239.8, 275.6, 46.5, 193.5, -8.2, 160.9 -29.4, 252.6 3.60 x lo-’ 

0. -79.2, -161.7.65.7, -142.6, -115.5, -112.7, -150.7, -56.9,113.2,24.2, -28.5, -21.2, -12.6, 

162.4, -122.6, -82.6, -11.8, -147.8, -55.0, -35.2, 12.3, -129.8, -157.8, -93.9, 6.7, 78.0, 

-166.2, 164.4, -47.8, -52.5, 3.9, 3.3, 35.7, -49.4, -4.1 -178.7, 82.0, 142.9, 145.2, 104.4, -78.3, 

14.7, 109.4, -92.9, - 162.5, -166.0. -174.1, -37.9, - 176.9, 83.1, -56.4, -178.9, 109.6, -162.0. 

-24.3, -94.4, -72.0, 118.0,93.2, -79.8, -175.1, -75.4,23.1,96.4, 145.1, 36.2.93.1, 112.0, -42.6, 

-72.6, 86.6, -24.4, 35.3, -77.7, -68.8. 168.0, -18.2, 103.3, 3.0, -82.4, -48.5, -127.4,68.9, 174.1, 

-116.7, 104.1, -146.0, -160.3, 93.2, -98.6, 153.1, 4.5, 136.0, 60.4, 133.0, -90.1, -15.1, -144.8, 

-117.6, 85.6, -15.4, 167.4, 174.1, 37.3, -14.0, -28.3, -121.0, 112.9, 5.7, 147.5,25.7,95.0, -117.7, 

124.8, -83.7, -178.5, -103.0,84.7. -150.0. -8.2, -3.2, -134.9, -90.9,41.4, -40.6, -39.3, 11.7 1.23 x lo-* 

Notes: (1) For small values of M, if the angles found are rounded, the code obtained will be a perfect PCA. This fact is not so obvious for 

large M. (2) Such a search was performed for large values of M, up to 1024. 
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