
The initial estimate  of s, and s2 is obtained  by  the  Tufts- 
Kumaresan  (TK) method 121, 161,  171,  [Ill, that is by forward  or 
backward  linear  prediction (depending on whether  one is looking 
for  falling  or  rising exponential  components)  after  low-rank ap- 
proximation  to  the observed data matrix or an estimated  correlation 
matrix.  A  standard  quasi-Newton  method is then used for  the 
maximization  of E, 181. The performance  of  this method is studied 
by computing  the bias and  the standard deviation of q ’ s  and sk’s 
obtained  from 500 trials. A  different  realization  of  noise is used for 
each trial.  Comparisons  between  the Newton estimates, the TK 
estimates,  and  the CR bound  for unbiased estimates are presented 
in Fig. 1. The Newton estimates are almost  unbiased  and  attain  the 
standard  deviation  given  by  the C R  bound. The TK estimates are 
biased  and have  variances that  significantly  differ  from  the CR 
bound. The improvements over the TK initial estimates are most 
significant at low SNR and when the two frequencies are closely 
spaced (case 1). For case 1 at 25 dB  SNR, the mean-square error E 
for  the TK method is about  twice  that  for  the Newton method. 
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Any Two N X N Costas  Signals Must Have 
at least One Common  Ambiguity  Sidelobe 
if N > 3-A Proof 
AVRAHAM FREEDMAN AND NADAV  LEVANON 

Costas  signals have  an  ambiguity  function  that approaches the 
ideal “Thumbtack”  configuration. To increase the  main  lobe/side- 
lobe  ratio  without increasing  the  number o f  frequencies (signal 
dimension, N) it may be possible to stagger  Costas signal  pulses 
whose ambiguity sidelobe  patterns do  not coincide. We prove  here 
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that Costas signals of  the same dimension, with  completely  differ- 
ent  ambiguity  sidelobe patterns, do  not exist  for N > 3. 

John P. Costas  has  suggested [I] a class of sonar and radar  signals, 
whose  range-doppler  sidelobe peaks  are well  controlled to ap- 
proach  the  ideal  “Thumbtack”  ambiguity  function.  A Costas signal 
belongs to a  family  of signals which  can  be  represented  by N dots 
in an  otherwise null N X N matrix such that each row contains  a 
single dot as does each column.  If  the columns  represent  consecu- 
tive  time slots of  duration  dt, and the  rows-distinct  frequencies at 
equal  spacing df, then such a representation  implies  that at  any 
time  slot  only  one frequency will be  transmitted,  and  there will be 
no  repetition  of frequencies. Costas particular signals  have  an 
additional  quality: The placement  of  dots is such that  for all 
possible  horizontal  and  vertical  shift  combinations  of  the  matrix 
relative to an unshifted  itself, at  most one pair of dots will coincide. 
The horizontal  and  vertical  shifts  correspond to delay and  doppler 
coordinates,  respectively,  of  the  ambiguity  function. The number of 
coincidences is related to the value of the  ambiguity  function. Thus 
a Costas  signal, in  principle,  should have a main lobe of level Nand 
sidelobes of  level 1. Coherent  processing  actually  yields  a  more 
complicated  ambiguity  function, with the  sidelobe peak  levels 
(particularly near the  main  lobe)  higher  than 1. 

Costas  has shown  that  for  dimensions N 2 there are several 
different signals that  meet  the  requirements of  no more  than  one 
coincidence. For  example, when N = 3 there are 4 Costas signals 
and  when N = 10 there are 2160 such  signals. Since  each  signal can 
create  a different  pattern of  sidelobe peak locations,  a  possible  way 
to increase the  main lobe/sidelobe  ratio can be to stagger different 
signals of  the same dimension,  and to integrate  the output  non- 
coherently.  Intuitively  it can  easily be seen that  many  ambiguity 
sidelobes of  one signal will  fit  in-between sidelobes of the  other 
signal. The interesting  question is whether  there could  be  found 
two, or more, Costas  signals of the same dimension without any 
coincidence of their  ambiguity  function sidelobes.  Exhaustive com- 
puter search for signals up  to order N = 11 did  not  yield such  pairs, 
except at N = 2 and 3, which  prompted a search for a proof  that 
such  pairs do  not exist when N > 3. The proof is given  below. 

As  Costas pointed out,  the  location  of  the  sidelobes is de- 
termined by  the  difference  triangle. Such a triangle can be best 
explained with the  help of an example. Let the Costas  signal be 
represented by the 7 X 7 frequency-time  matrix  shown in Fig. 1. 

Fig. 1. Matrix 
example. 

representation of the Costas  signal  used in the 

Such a  signal  can also be  described by the sequence 

{aj} =4,7,1,6,5,2,3. (1 1 
The difference  triangle  of  the signal described in Fig. 1 i s  given in 

Table 1. The first row  of the  difference  triangle is formed  by  taking 

Table 1 The Difference  Triangle  of  the Sequence in (1) 

(a;) 4 7 1  6 5 2 3  
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differences between adjacent terms in  the sequence.  The  second 
row  by taking  differences  between  next-adjacent terms, and so on. 

The value of the  difference  triangle in  row i and column j is 
given  by 

The relation  between the  difference  triangle and the  sidelobes 
pattern is such that  for  the delay difference  given  by i time slots 
there will be peaks  at the  doppler  frequencies  corresponding to the 
values of Dl,,. A Costas  signal should have no  repetition  of values in 
any row of  the  difference  triangle. The pattern  of sidelobe peak 
locations  for  our  example is given in  Fig. 2. 

DOPPLER FREOUENCY. 0 

-6 -5 - 4  -3 -2  -I I 2 3 4 5 6 

I X  X x x  X X 

2 x x x x  X 

;3 x x  x x  

other pairs of columns,  which will lead to the  conclusion  that if 
two such  Costas  signals  exist, their  ambiguity  sidelobes  should fill 
the  triangle  marked  by  circles in Fig. 3. 

We  will  now try to construct  the Costas signals that  should  yield 
the  combined  pattern  in Fig. 3. Rule a) and Fig. 3 imply that  the two 
occupied  locations in the last row ( i  = 6) are each contributed  by a 
different signal. In order to have  an ambiguity  sidelobe at a  normal- 
ized  doppler  of -1 or 1, at the  maximum delay, the  signal  should 
have  a  difference of *I between  the first and last  terms of its 
sequence. In other words, one  of  the two signals should be de- 
scribed  by  the sequence 

{ a i }  = m ; . . , m  + 1 (3) 

and the  second  signal  by 

{ b;}  = k;.., k - I .  (4) 

Consider now the row before  the last ( i  = 5). Rule a) implies  that 
each  signal  should  contribute two of  the  four  differences { - 2 ,  -1, 
1, 2 ) .  There  are six different  combinations in which  the  sidelobes 
could  be  divided  between the two signals. Each combination  can 
be  generated  by two different sequences for each  signal.  The six 
combinations are investigated in Table 2,  with the  conclusion  that 

6 X 1 
Fig. 2. A matrix  representing  sidelobe  locations  of  the  ambigu. 
ity function. 

Table 2 Summary of  the Six Major  Combinations  of  the 
Last Two Rows of  the  Combined  Ambiguity 
Sidelobe  Pattern 

It  should  be  noted that  the  sidelobe  pattern in Fig. 2 represents 
only  one  half  of the  ambiguity  function (positive delays).  The 
second  half is symmetrical with respect to the  origin. 

The matrix of sidelobe  locations  must  obey  the following rules: 

a) Row i has N - i sidelobes. 
b) In any pair  of columns j , -  j there are together N - j side- 

c)  The matrix  dimensions are ( N  - 1) X 2(N - 1). 

Rule a) results from the fact that in a sequence of  length N there 
is only  one spacing of N - 1 (the  spacing  between  the first and the 
last terms in  the sequence), two spacings of N - 2 terms, etc. 

Rule  b) i s  due to the fact that  the sequence is constructed  from 
consecutive  numbers. A difference D such that (Dl = N - 1 must 
appear once,  a  difference of (Dl = N - 2 must  appear twice,  etc. 

Proving  by  contradiction  it  will be assumed that  there are two 
Costas  signals with completely  different  sidelobe  patterns. Because 
the two sidelobe  patterns have no  common sidelobe  locations, 
they  can  both  be  plotted  on one ( N  - 1) X 2(N - 1) matrix. The 
sidelobe  locations  of  both signals will be  marked on Fig.  3. 

lobes. 

-6 -5 - 4  -3 -2  -I I 2 3 4 5 6 

1 0 0 0 0 0 0 0 0 0 0 0 0  

3 21 1 
4 

5 0 0 0 0  

6 0 0  

Fig. 3. Combined  ambiguity  sidelobe  locations  of two hypo- 
thetical Costas  signals which have no sidelobe  coincidence. 

We  will first  construct  columns -1 and 1. Following  rule b), each 
signal  should have N - 1 sidelobes in these two columns,  and 
together 2(N - 1) sidelobes  (since no  two sidelobes can occupy 
the same location). This means that  the two columns  must  be full. 
We  now  note that in  the last row,  following  rule a), there has to be 
one  sidelobe  for each  signal. Hence,  the two sidelobes must be in 
columns -1 and 1 and  the  remaining  elements  of  the last row must 
be  empty. 

In the  next  pair of columns, - 2  and 2,  there  should  be 2(N - 2)  
occupied  locations (rule  b).  However, not in the last row  which 
should  remain  empty.  Hence  columns - 2  and 2 must be filled 
except  for  the  last row. Similar  arguments  can be  applied to all the 

Case  Last Rows Sequences that Each  Can Yield Comment 
No. in Fig. 3 the  Pattern  Indicated  by  the X ’ s  No. 

1 0 0 X x m,m- l ; . . ,m+ l ,m+l  I 
o x  m,m ;..,m + 2,m + 1 I 

2 0 x 0 x m,m- l;..,m- l , m +  1 I1 
o x  m,m+2;~.,m+2,m+I I I  

3 X 0 0 x m , m -  l:..,m-  2,m+ 1 Ill 
o x  m,m+3;..,m+2,m+I 111 

- 2 - 1  1 2 

4 0 x X 0 m,m ; . . , m - l , m + l  I 
o x  m , m  + 2;..,m + 1.m + 1 I 

5 X O X O  m,m ; . . ,m-2 ,m+l  I 
o x  m,m + 3;..,m + 1.m + 1 I 

6 X x 0 0 m,m+ 2;..,m- 2,rni-I  IV 
o x  m,m + 3;..,m - l , m  + 1 IV 

Comments: 
I. 
I I .  

Ill. 

IV.  

The  sequence is not Costas  because of two identical  terms. 
The sequence is  not Costas  because of two identical  terms. 
However,  at N - 3 the two identical  terms (the second  and  the 
one  before  the  last)  converge to one,  which makes it Costas. 
This  sequence is  Costas but the sequences that  can  generate 
the pattern of 0 ’ s  are not Costas  since the  pattern is dual to 
case 4. 
There is  a difference of 4 between  the  second  term  and  the  one 
before  the  last. Such a difference is not allowed in row i = N - 
3. (In our example  this  corresponds to location i = 4, j = 4 in 
Fig. 3, which should be empty.) 

both sequences, for at  least one  of  the two signals  necessary to 
generate each of the six combinations,  cannot  be a Costas se- 
quence, when N > 3. Hence, we have proved  that it is impossible 
to  construct two Costas  signals, of  the same dimension N, with 
N =- 3, which have  completely  different  sidelobe  patterns of their 
ambiguity  function. 

Note added on January 7, 7985: Solomon W.  Golomb has called 
our  attention  to  a similar  proof  by  Herbert Taylor, in ”Non-attack- 
ing rooks with distinct differences,” University  of  Southern  Cali- 

(Mar. 1984). 
fornia,  Communication Sciences Institute, Tech. Rep.  CSl-84-03-02 
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