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Abstract Recently proposed direct-detection laser range 

finders transmit low power, periodic, unipolar (ON-OFF) coded 
signal, instead of the commonly used strong narrow single pulse. 
The combination of non-coherent pulse compression (NCPC) 
and appropriate binary sequences produces a sidelobe-free 
periodic delay response. The continuous wave (CW) nature of 
the signal results in overlaps between returns from multiple 
targets. When envelope detected, the overlaps can create 
intermodulation that may hurt the sidelobe-free range response. 
The paper studies the effect of different sequence types and 
different envelope detector response profiles and suggests 
measures to mitigate the influence of multiple targets by 
calibration of envelope detector. 

I. INTRODUCTION 

Pulse compression is a well-established radar technique 
that creates a virtual narrow strong pulse out of a weak long 
pulse [1], [2]. Pulse compression is achieved by modulating 
the transmitted long pulse and correlating its received 
reflection with a reference modulated-pulse stored in the 
receiver. Noncoherent pulse compression (NCPC) studied 
recently [3]–[8], employs on-off keying (OOK) modulation. 
NCPC is of interest to direct-detection laser radar (LIDAR), 
and to simple radars that utilize noncoherent microwave 
power source (such as magnetron transmitters) [9]–[13].  

Previous researches [14], [15] include extensive analysis of 
the performances of NCPC in the presence of noise. However, 
research to date did not yet address the performances of 
NCPC when returns from multiple targets overlap. This is 
likely to happen when continuous wave (CW) waveforms are 
used. Since the returns are processed by a noncoherent 
processor, following an envelope detector, the process is non-
linear, and overlaps can cause intermodulation. The nature 
and characteristics of the intermodulation effect depend on 
the specific setup of the targets (number of returns, relative 
delays, and relative amplitudes between the returns). The 
manifestation of intermodulation effects is also waveform 
dependent, where for some waveforms it would translate as 
ghost targets, and for some others it would practically 
introduce a noise-like signal at all delay bins. The envelope 
detector's profile (linear, square, logarithmic, etc.) also has 
influence on the extent and magnitude of sidelobes. 

Fig. 1 illustrates these phenomena, using two targets as 
suggested in [7]. The targets are at delay bins number 100 and 
200, and the returned amplitude of the second target is half 
the amplitude relative to the return of the first target. The two 

graphs in this figure differ by the type of waveform used in 
each one. In Fig. 1 (a), a length 1019 periodic Legendre code 
is used, and the resulted correlation output shows two peaks 
at the correct delays with noise-like sidelobes. For Fig. 1 (b), 
a length 1023 periodic m-sequence is used, and the resulted 
correlation output shows two peaks matching the correct 
delays of the target returns, with an additional ghost peak at 
delay bin number 706. 

This paper presents an analysis of this intermodulation 
effect of multiple returns with additive noise, for the specific 
case of periodic NCPC. The paper shows that this 
intermodulation simply does not exist when using squared-
law envelope detector, but will appear if the detector deviates 
from squared-law profile, even slightly. The paper also 
proposes a calibration method of the squared-law detector, 
using unique patterns caused by intermodulation. 

Fig. 1. Processed returns of two targets using linear envelope 
detector, (a) - length 1019 Legendre code, (b) - length 1023 m-
sequence. 

II. ANALYSIS OF MULTIPLE RETURNS IN THE PRESENCE OF 

NOISE 

A. Signal model and asymptotic statistics 

The transmitted signal is a periodic unipolar binary (on-off) 
sequence 𝑐 , where for the scope of this paper, the sequence 
𝑐  is a perfect-periodic correlation (PPC) sequence [7] (for 



example, m-sequence or Legendre). The period of the 
sequence will be noted as 𝑁. 

The received signal is a superposition of returns from 𝐾 
targets, each with its own amplitude, phase, and time delay 
(𝛼 , 𝜑 ,  and 𝑑 , respectively), with additive white complex-
normal noise 𝑤 :  

 𝑠 = 𝛼 𝑒 , 𝑐 + w . (1) 

The target amplitude and delay parameters (𝛼  and 𝑑 ) are 
non-negative fixed values, the phase has uniform distribution 
in the range of [0,2𝜋], and as the source is non-coherent, the 
phase samples are statistically independent. 

The received signal is processed by envelope detector, 
followed by pulse compression filter, with a reference signal 
�̃� , matched to the unipolar sequence 𝑐  such that the 
correlation is perfect-periodic. In the specific cases of m-
sequence and Legendre codes, the reference signal �̃�  is 
simply the bi-polar version of 𝑐  (�̃� = 2 ⋅ 𝑐 − 1) [7]. 

The response of the envelope detector is: 
 𝑟 = 𝑓(|𝑠 |), (2) 

where |⋅| denotes element-wise absolute value of the 
argument, and 𝑓(⋅) is some monotonic amplitude response. 
Common envelope detector profiles are linear, square-law 
and logarithmic envelope detectors: 

 
𝑟

( )
= |𝑠 | 

𝑟
( )

= |𝑠 |  

𝑟
( )

= 𝑙𝑜𝑔(|𝑠 |). 

(3) 

As mentioned above, the envelope-detected signal 𝑟  is fed 
to the pulse compression filter, where 𝑃 periods of the signal 
are convolved with the reference signal: 

 𝑦 = 𝑟 ⊗ �̃� = 𝑟 ⋅ �̃�

⋅

. (4) 

Note the difference from classic pulse compression, where 
the matched filter is operating on the received signal 𝑠 , and 
the response is a superposition of responses to each element 
in (1) separately [1]. However, for NCPC, as the envelope 
detector is not linear, such superposition does not apply and 
the different signal and noise elements would get entangled. 

To show the asymptotical behavior of the output signal, the 
normalized output signal 𝑦  is defined: 

 𝑦 =
𝑦

𝑃
=

1

𝑃
𝑟 ⋅ �̃�

⋅

. (5) 

Assuming that the total number of integrated code elements 
(number of bits) is high enough (𝑁 ⋅ 𝑃 ≫ 1), using the central 
limit theorem (CLT), it can be shown that 𝑦  has normal 
distribution with mean 𝑦 = 𝜇 ,  and variance 𝑣𝑎𝑟{𝑦 } =
𝜎 , . This assumption is valid when the integration time is of 
several long periods of the sequence, and this is indeed the 
case for the experimental results presented in [9], [12], [13], 
[15]. 

The mean of 𝑦  is: 
 
 
 

 

𝜇 , =
1

𝑃
𝑟 ⋅ �̃�

⋅

 

         = 𝜇 , ⋅ �̃� , 

(6) 

and the variance of 𝑦  is: 

 𝜎 , =
𝑀 , , ⋅ �̃� ⋅ �̃�

−𝜇 , ,

 (7) 

where 𝜇 ,  and 𝑀 , ,  are the mean and second moment of 
𝑟 : 

 
𝜇 , = 𝑟  

𝑀 , , = 𝑟 𝑟 , 
(8) 

Now, after formalizing the signal model, the following sub-
sections will present the effect of specific envelope detector 
profiles and examining the resulted signal by its statistical 
properties. 

B. Linear envelope detector 

The response of linear envelope detector is: 

 𝑟
( )

= |𝑠 | = 𝛼 𝑒 , 𝑐 + w , (9) 

which can be expressed as: 

 𝑟
( )

=

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓

w + 𝛼 𝑐

+ 2𝛼 𝑐 𝑤 ⋅ 𝑐𝑜𝑠𝜑 ,

+
𝛼 𝛼 𝑐 𝑐

⋅ 𝑐𝑜𝑠 𝜑 , − 𝜑 ,
.

 (10) 

Calculating the statistics of 𝑟  is relatively cumbersome, so 
for the scope of this short paper, a simplified problem of only 
𝐾 = 2 targets and no additive noise (𝑤 = 0) is discussed in 
this sub-section. In this case, (10) is simplified to: 

 𝑟
( )

=

𝛼1
2𝑐𝑛−𝑑1

+ 𝛼2
2𝑐𝑛−𝑑2

+2𝛼1𝛼2𝑐𝑛−𝑑1
𝑐𝑛−𝑑2

⋅ 𝑐𝑜𝑠 𝜑 , − 𝜑 , .

 (11) 

Using the following integral: 

 𝑐 + 𝑐𝑜𝑠𝜑 𝑑𝜑 = 4√𝑐 + 1 ⋅ 𝐸
2

𝑐 + 1
, (12) 

where 𝐸(⋅) is the complete elliptic integral of the second kind 
[16], the mean value of 𝑟( ) is: 

 

𝜇 ( ), = 𝑟
( )

=
1

(2𝜋)
𝑢 + 𝑣 𝑐𝑜𝑠(𝜑 − 𝜑 )𝑑𝜑1𝑑𝜑2

=
2

𝜋
√𝑢 + 𝑣 𝐸

2𝑣

𝑢 + 𝑣
, 

(13) 



where 𝑢 = 𝛼1
2𝑐𝑛−𝑑1

+ 𝛼2
2𝑐𝑛−𝑑2

 
and 𝑣 = 2𝛼1𝛼2𝑐𝑛−𝑑1

𝑐𝑛−𝑑2
. 

To interpret this result, remember that the amplitudes 𝛼  are 
fixed non-negative values, and 𝑐  are the uni-polar binary 
values of the sequence, which serves as indicator terms. Note 
that in (13), there are terms with product of different 𝑐  values. 
These product terms are the source of the intermodulation 
effect of the two returns. 

As a toy example, this case of two returns under linear 
envelope detector is examined using two different sequences: 
a) length 7 m-sequence, and b) length 11 Legendre. For the 
simplicity of this example, amplitude values will be set as 
𝛼 = 𝛼 = 1, and delay values are 𝑑 = 0, 𝑑 = 1. 

For length 7 m-sequence, the sequence and reference code 
are: 

 
𝑐 = [   0,    1,    1,     1,    0,    0,    1] 
�̃� = [−1,    1,    1,    1, −1, −1,    1]. 

(14) 

The expected values of post-envelope detection samples are: 
 𝜇 ( ), = [ 𝛾 ,  𝛾 ,  𝛾 ,   𝛾 ,  𝛾 ,  0,  𝛾 ], (15) 

where 𝛾  represents samples where only return #1 exist (as 
𝑐 = 1), and in a similar manner, 𝛾  represents samples 
where only return #2 exists, and 𝛾  represents samples where 
both exists. The values of 𝛾  are derived from (13): 

 

𝛾 = 𝛼 = 1 
𝛾 = 𝛼 = 1 

𝛾 =
2

𝜋
(𝛼 + 𝛼 ) 𝐸

2𝛼 𝛼

(𝛼 + 𝛼 )
=

4

𝜋
. 

(16) 

The mean value of post-matched filter sequence is calculated 
directly using (6): 

 𝜇 , =  
8

𝜋
,  

8

𝜋
,  0,   0,  0,  4 −

8

𝜋
,  0 . (17) 

Repeating the calculations for length 11 Legendre code, the 
sequence and reference code are: 

 
𝑐 = [1,   0,  1,    0,    0,    0,  1,   1,  1,    0,  1], 
�̃� = [1, −1,  1, −1, −1, −1,  1,   1,  1, −1,  1], 

(18) 

the expected values of 𝑟( ) are: 
 𝜇 ( ), = [𝛾 , 𝛾 , 𝛾 , 𝛾 , 0,0, 𝛾 , 𝛾 , 𝛾 , 𝛾 , 𝛾 ] (19) 

and the mean output sequence is: 

 𝜇 , =
12

𝜋
,
12

𝜋
, 𝛽, 𝛽, 𝛽, −𝛽, 𝛽, 𝛽, −𝛽, −𝛽, 𝛽 , (20) 

where 𝛽 = 2 − . 

Note the different behavior of responses between m-
sequence and Legendre, where for both types of codes there 
are two peaks at 𝑛 = 0 and 𝑛 = 1 matching the correct delay 
of the returns (𝑑  and 𝑑 ), also, the amplitude of the peaks is 

 times the number of '1's for each code (4 '1's for the m-

sequence, and 6 '1's for the Legendre). However, the m-
sequence response shows one additional "ghost" sidelobe and 
zeros for all other delays, where the Legendre response shows 
sidelobes along all delay bins. The reason for this behavior is 
due to a property of m-sequence where a modulo-2 sum 
(bitwise XOR) of an m-sequence with another phase of the 
same sequence yields a third phase of the sequence [17]. This 
property is not valid for Legendre sequences, therefore the 
mixing of 𝑐  and 𝑐  causes pseudo-random sidelobes (in this 
example, the pseudo-noise has 2 unique values, but this is not 
always the case). 

C. Square-law envelope detector 

As the previous sub-section showed, if the output of the 
envelope detection involves mixed terms of different code 
elements, the resulted output signal of multiple returns would 
get intermodulated, causing some "ghost" or noise-like 
sidelobes. This sub-section shows that with square-law 
detector there is no such intermodulation, as the resulted 
expressions for the expected post-detection signal has no 
mixed terms. 

The response of square-law envelope detector: 

 𝑟
( )

= |𝑠 | = 𝛼 𝑒 , 𝑐 + w , (21) 

which can be rewritten as: 

 

𝑟
( )

= w + 𝛼 𝑐  

                       + 2𝛼 𝑐 𝑤 ⋅ 𝑐𝑜𝑠𝜑 ,  

                          +
𝛼 𝛼 𝑐 𝑐

⋅ 𝑐𝑜𝑠 𝜑 , − 𝜑 ,
. 

(22) 

Using the fact that integrating over a full period of a cosine 
is zero, the mean value of 𝑟( ) becomes: 

 𝜇 ( ), = 𝑟
( )

= 𝜎 + 𝛼 𝑐 , (23) 

where 𝜎  is the variance of the additive white noise 𝑤 . This 
expression shows that square-law envelope detector, on 
average, simply sums up the power of each return, according 
to the value of the binary indicator 𝑐 . Note that each element 
in this sum is dependent on only one source, as the integration 
zeroed all the cross terms. 

Combining (23) and (6) yields the expected output signal: 

 

𝜇 , = 𝜎 + 𝛼 𝑐 ⋅ �̃�  

       = 𝜎 �̃� + 𝛼 𝑐 ⋅ �̃�  

(24) 

This expression can be simplified using two properties of 
the specific sequences in the scope of this paper, where both 
m-sequence and Legendre a) have perfect periodic cross 
correlation between the transmitted uni-polar sequence 𝑐  and 
the bi-polar reference code �̃� , b) the number of '1' in a period 
of the sequence is larger by one than the number of '0's. Using 
these properties, (24) becomes: 

 𝜇 , = 𝜎 +
𝑁 + 1

2
𝛼  𝛿 . (25) 

This expression shows that the resulted output signal is in 
fact a simple superposition of the input elements, with an 
impulse matching each return, proportional to the return's 
received power, at the appropriate delay, with additive noise 
floor. 

 



D. Small deviation from square-law envelope detector 

The previous sub-section showed that while square-law 
envelope detector is used in NCPC receiver, no 
intermodulation occurs between multiple returns or between 
returned signal and noise. However, several aspects should be 
considered: 

a) Practical response of square-law detector might 
slightly deviate from squared profile. 

b) Envelope detectors have limited dynamic range, where 
beyond it, the response tends toward saturation. 

c) In some scenarios, the dynamic range of square-law 
detector is simply not high enough, and the design 
forces the use of logarithmic envelope detector instead. 

 
This sub-section investigates these issues by analyzing the 

series expansion of envelope detector profiles. The mean 
output signal for any envelope detector profile of the type 
𝑟

( )
= |𝑠 |  can be calculated. Using the same method as 

shown in sub-sections II.B and II.C, the calculation is straight 
forward for even values of 𝑞, but quite cumbersome for odd 
𝑞. However, it can easily be shown that for any integer 𝑞 other 
than 2, 𝜇 ( ),  contains mixed terms where bits of different 
returns are multiplied. Therefore, for any 𝑞 ≠ 2, multiple 
returns would result in intermodulations. 

The case of small deviation from square-law envelope 
detector will be modeled as an envelope detector with a 
response profile of 3rd order polynomial: 

 𝑟 = 𝜀 𝑟
( )

+ (1 − 𝜀 − 𝜀 )𝑟
( )

+ 𝜀 𝑟
( )

, (26) 
where 𝜀  and 𝜀  are relatively small real constants. 

Since the matched filter, as described in (4), is a linear and 
time-invariant (LTI) system, the output signal is: 

 
𝑦 = 𝜀 𝑟

( )
⊗ �̃�  

                          +(1 − 𝜀 − 𝜀 )𝑟
( )

⊗ �̃�  

      +𝜀 𝑟
( )

⊗ �̃� . 

(27) 

The mean value of 𝑟 , 𝜇 , , and the mean of the normalized 
output signal 𝜇 ,  can also be described as sums of three 
terms, one for each term in the series of 𝑟 : 

 

𝜇 , = 𝜀 𝜇 ( ),  

                              +(1 − 𝜀 − 𝜀 )𝜇 ( ),  
          +𝜀 𝜇 ( ), , 

(28) 

and: 

 

𝜇 , = 𝜀 𝜇 ( ), ⊗ �̃�  

                             +(1 − 𝜀 − 𝜀 )𝜇 ( ), ⊗ �̃�  

         +𝜀 𝜇 ( ), ⊗ �̃� . 
(29) 

This notation allows us to examine the extent of sidelobes, 
caused by envelope detector which slightly deviates from 
square-law response. 

For the specific case of two returns with no noise, the mean 

of 𝑟
( ) is (due to its length, detailed derivation is not given 

here): 

 
𝜇 ( ), =

8𝑢√𝑢 + 𝑣 𝐸
2𝑣

𝑢 + 𝑣
3𝜋

 

               −
2(𝑢 − 𝑣 )𝐾

2𝑣
𝑢 + 𝑣

3𝜋√𝑢 + 𝑣
, 

(30) 

where 𝐾(⋅) and 𝐸(⋅) are the complete elliptic integral of the 
first and second kind, respectively [16], 𝑢 = 𝛼1

2𝑐𝑛−𝑑1
+

𝛼2
2𝑐𝑛−𝑑2

 and 𝑣 = 2𝛼1𝛼2𝑐𝑛−𝑑1
𝑐𝑛−𝑑2

. 
To illustrate the effect of small deviation from square 

profile, m-sequence is used, since as was demonstrated above 
for m-sequence, the intermodulation manifests as a single 
sidelobe. In the case of two returns with no additive noise, the 
mean of output signal will be of the form: 

 𝜇 , = 𝛽 𝛿 + 𝛽 𝛿 + 𝛽 𝛿 , (31) 
where 𝛽  and 𝛽  are the amplitudes of the mainlobes at delays 
𝑑  and 𝑑 , and 𝛽  is the amplitude of the sidelobe at delay 
𝑑 . The delay of the sidelobe is determined by the delays of 
the two returns 𝑑  and 𝑑 , and by the specific sequence used. 

The amplitudes 𝛽  can be computed using a property of m-
sequence, where at the correct delay, '1's in the code align 
exactly (𝑁 + 1)/2 times against '1's in the reference code, 
and at all different delays, each of the combinations '1'-'1', '0'-
'1' and '1'-'0' occur (𝑁 + 1)/4 times (this property is general 
for all complete Hadamard difference set (CHDS) sequence) 
[17]. Therefore, combining (13), (23) and (30) into (6) at 𝑛 =
𝑑  gives the parameter 𝛽  in (31): 

 

𝛽 = 𝜀 𝛽
( )

+ (1 − 𝜀 − 𝜀 )𝛽
( )

+ 𝜀 𝛽
( ) 

𝛽
( )

=
𝑁 + 1

4
 

⋅ 𝛼1 − 𝛼2 +
2

𝜋
(𝛼1 + 𝛼2) 𝐸(𝑢)  

𝛽
( )

=
𝑁 + 1

2
𝛼  

 𝛽
( )

=
𝑁 + 1

4
⋅ 

⋅

⎣
⎢
⎢
⎢
⎢
⎡

𝛼1
3 − 𝛼2

3 +

8(𝛼1
2 + 𝛼2

2)(𝛼1 + 𝛼2) 𝐸(𝑢)

3𝜋
−

2(𝛼1 − 𝛼2)2(𝛼1 + 𝛼2)𝐾(𝑢)

3𝜋 ⎦
⎥
⎥
⎥
⎥
⎤

, 

(32) 

where 𝑢 =
( )

. Due to symmetry in the roles of 𝛼  and 

𝛼 , the parameter 𝛽  can be derived from (32) by switching 
𝛼 ↔ 𝛼 .  

To calculate 𝛽 , a property of m-sequence, where a 
modulo-2 sum of two phases of a sequence is resulted in a 
third phase of the sequence, yielding: 

 

𝛽 = 𝜀 𝛽
( )

+ (1 − 𝜀 − 𝜀 )𝛽
( )

+ 𝜀 𝛽
( ) 

𝛽
( )

=
𝑁 + 1

4
(𝛾 + 𝛾 − 𝛾 ) 

=
𝑁 + 1

4
⋅ 

⋅ 𝛼 + 𝛼 −
2

𝜋
(𝛼 + 𝛼 ) 𝐸(𝑢)  

𝛽
( )

= 0 

𝛽
( )

=
𝑁 + 1

4
⋅ 

⋅

⎣
⎢
⎢
⎡𝛼1

3 + 𝛼2
3 −

8(𝑎1
2 + 𝑎2

2)(𝑎1 + 𝑎2) 𝐸(𝑢)

3𝜋

+
2(𝑎1 − 𝑎2)2(𝑎1 + 𝑎2)𝐾(𝑢)

3𝜋 ⎦
⎥
⎥
⎤

. 

(33) 



Using (31), (32) and (33), it is possible to compute the 
magnitude of sidelobe for this case (m-sequence with two 
returns). Fig. 2 shows the amplitude of ghost sidelobe |𝛽 |, 
relatively to the amplitude of the first target's mainlobe (𝛽 ) 
in dB. The deviation from squared profile of the envelope 
detector is modeled by addition of small linear term (solid 
line) and by addition of small cubic term (dashed line). Fig. 2 
(a) examines the case of two targets with equal amplitudes 
(𝛼 = 𝛼 ), where for 𝜖 = 0.01, the sidelobe is −24.4𝑑𝐵 and 
−22𝑑𝐵 bellow the mainlobe for the cases of linear and cubic 
deformations, respectively. As seen in Fig 2 (b), the effect 
becomes more significant as the amplitude of returns differ. 
Here, the amplitude of first return is 10 times smaller than the 
amplitude of the second return, and the relative sidelobe 
levels are −15.7𝑑𝐵 and −19.7𝑑𝐵 for the cases of linear and 
cubic deformations, respectively. 

Fig. 2. Relative sidelobe level when response of envelope 
detector deviates from squared profile. (a) – two returns with equal 
amplitude (𝛼 = 𝛼 ), (b) – amplitude of one return is smaller than 
the amplitude of the second (𝛼 = 𝛼 /10). 
 

From (31), (32) and (33), it can be shown that as the gap in 
amplitude increases (return of one return is significantly 
stronger then other's), the sidelobe level becomes closer to the 
mainlobe of the lower-amplitude return. 

III. SQUARED ENVELOPE CALIBRATION 

As previous section showed, NCPC is sensitive to the 
response profile of the envelope detector, and deviations from 
squared response introduce intermodulations. Calibration of 
the envelope detector's response can solve this problem. The 
process of calibration can be performed either by direct or 
indirect measurements of the response 𝑟 = 𝑓(|𝑠 |). 

The direct measurement can be simply performed, for 
example, by inserting a signal with known varying amplitude, 
and measuring the amplitude of the envelope-detected signal. 
The indirect measurement can be performed by measuring the 
matched filter response from scenario of known sets of 
returns (e.g. generated in an optic delay line, or a controlled 
test where returns can be turned on and off), and using 

equations (1), (2), (6), and (7), where the parameters of the 
inserted signal 𝑠  (set of delays 𝑑  and amplitudes 𝛼 ) are 
known. The mean values of the output signal, 𝜇 ,  are 
measured, and the required response 𝑓(|𝑠 |) can be computed 
using Least Squares (LS) estimation. Explicitly, let us model 
the response of the envelope detector as polynomial of order 
q: 

 𝑓(|𝑠 |) = 𝜖 |𝑠 | , (34) 

where {𝜖 } are 𝑞 + 1 unknown parameters, to be estimated. 
Note that the polynomial model is not always suitable, and for 
example, does not fit the cases of logarithmic detectors, or 
saturation. In these cases, other models should be used. 

To compute the unknown parameters by LS estimation, 𝑈 
sets of returns are used, where for each of the set, the 𝑞 
moments of |𝑠 | are calculated given the returns' amplitude 
and delay for each set (either analytically or numerically): 

 𝜇 ,
( , )

= 𝑠 , , 𝑙 = 1 … 𝑞, 𝑢 = 0 … 𝑈 − 1, (35) 

where 𝑠 ,  is the received signal from set 𝑢 of returns. 
the set of linear equations to be solved is: 

 𝜇 ,
( )

= 𝜖 ⋅ 𝜇 ,
( , )

, 𝑢 = 0 … 𝑈 − 1, (36) 

and this set has a solution in an LS sense, for polynomial order 
smaller than the number of sets (𝑞 + 1 ≤ 𝑈). 

Once the response 𝑓(|𝑠 |) is calculated, the calibration to 
squared-law response is performed by: 

 𝑟 = 𝑓 (𝑟 ) , (37) 

where 𝑓 (⋅) is the inverse of 𝑓(⋅). 
To demonstrate the calibration process, a simple case of 

order 3 response is investigated: 𝑟 = 𝜀 𝑟
( )

+ 𝜀 𝑟
( )

+

𝜀 𝑟
( ). For the LS estimation, a model of an order 5 response 

will be used: 𝑓(|𝑠 |) = ∑ 𝜖 |𝑠 | . As the model is of order 
5 polynomial, we are required to generate at least 6 unique 
sets of returns to estimate the response coefficients. For this 
example, a simple 3-returns scenario will be used: {𝛼 =
0.1, 𝑑 = 0}, {𝛼 = 0.5, 𝑑 = 10}, {𝛼 = 1, 𝑑 = 20}. 𝑈 = 7 
different sets of these 3 returns are generated, where in every 
set a different combination of the returns are active (the 
combinations are: 1st; 2nd; 3rd; 1st&2nd; 1st&3rd; 2nd&3rd; 
1st&2nd&3rd). For the estimation process, 𝑃 = 1000 periods 
of length 𝑁 = 127 m-sequence are used, where for each set, 

the mean of the output signal 𝜇 ,
( ) is measured, and the 

moments 𝜇 ,
( , ) are numerically calculated. 

For this simulative demonstration, the response is set with 
the coefficients: 𝜖 = 0.02, 𝜖 = 1, 𝜖 = 0.01. The measured 
output signal, and the 5 computed moments are shown in fig. 
3. Each subplot of fig. 3 presents a different set of returns. 

From this set of data, the estimated response is �̂� = 𝜖̂ 𝑟
( )

+

𝜖̂ 𝑟
( )

+ 𝜖̂ 𝑟
( )

+ 𝜖̂ 𝑟
( )

+ 𝜖̂ 𝑟
( ), where the estimated 

coefficients are: 𝜖̂ = 0.0261, 𝜖̂ = 1.0049, 𝜖̂ = 0.0099, 
𝜖̂ = −0.0031, 𝜖̂ = 0.0002, which fits the simulated model. 
 
 
 
 



Fig. 3. Calculated moments 𝜇 ,
( , ) and measured output signal 𝑦 , 

for the 7 different sets of returns, where in each subplot, the active 
returns are: (a) 𝛼 , (b) 𝛼 , (c) 𝛼 , (d) 𝛼 &𝛼 , (e) 𝛼 &𝛼 , (f) 𝛼 &𝛼 , 
(g) 𝛼 &𝛼 &𝛼 . The signal for the simulation is 𝑃 = 1000 periods 
of length 𝑁 = 127 m-sequence. 

IV. CONCLUSION 

Non-coherent pulse compression (NCPC) suffers from 
intermodulations as returns from multiple targets overlap. The 
nature of the intermodulation depends on the transmitted 
waveform (code length and code type), the targets (number of 
targets, relative delays and relative amplitudes), and the 
envelope detector's response profile. Using square-law 
envelope detector eliminates the effect of intermodulation, 
but it will appear if the detector deviates from squared-law 
profile, even slightly, therefore, the envelope detector must be 
calibrated to square-law response. 
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