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ABSTRACT: Autonomous position determination in the Globalstar satellite communication system is discussed.
( )The two-way communication between a user terminal on the earth’s surface and a single low earth orbit LEO

satellite makes it possible to derive range and range-rate and determine the user terminal position instantly.
Expected accuracy is presented, and a simple direct solution is given.

INTRODUCTION

� �Globalstar 1 is a satellite communication sys-
tem designed to provide voice and low-rate data

Ž .communication to user terminals UTs on the
earth. The satellite constellation includes 48 low

Ž .earth orbit LEO satellites at a height of 1400 km,
arranged in eight orbits with an inclination of
52 deg. The Globalstar satellite acts as a bent-pipe

Ž .relay between a regional gateway GW and the UT.
The orbit of the satellite is known accurately.

Primarily for operational reasons, before a UT
phone call is connected, the system needs to know
the UT position with a horizontal accuracy of better
than 10 km. Connection of the call cannot be de-
layed for more than about 3 s, and a call should go
through even if the UT sees only one Globalstar
satellite. Hence there is a need for instant coarse
positioning using the system’s own satellite and

� �signals 2 . While two-satellite, two-dimensional
Ž .2-D , active positioning is found in other opera-

� �tional systems 3, 4 , single-satellite instant posi-
tioning is unique. This paper therefore concentrates
on this aspect of Globalstar positioning.

Single-satellite positioning is based on measure-
ments of range and range rate. The range between
the satellite and the UT is derived from a round-trip
delay measurement, from which the known GW-to-
satellite leg is removed. Globalstar uses a code

Ž .division multiple access CDMA concept, which
utilizes a wideband spread-spectrum signal, as in
GPS. Hence the delay measurement resolution is
relatively high. Range rate is derived from Doppler
measurements. In a passive satellite Doppler navi-
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� �gation system, such as TRANSIT 5 , the true
Doppler cannot be separated from the UT oscillator
frequency offset; hence only Doppler differences
Ž .rather than absolute Doppler can be measured.

Ž .When the UT is active receives and transmits and
uses the same master oscillator in its receiver and
transmitter, two Doppler measurements�one at

Ž .the satellite in practice at the GW and one at
Ž .the UT and communicated to the GW �provide

enough information to separate the true Doppler
Ž .from the UT frequency offset see Appendix A .

This paper derives the expected accuracy of 2-D
positioning based on one range and one range-rate
measurement to a single satellite. In the third di-
mension, the UT is assumed to be on the earth’s
surface. The horizontal error resulting from an ele-
vation error is also derived. Finally, a simple direct
solution is presented that can be used by itself or to
provide a first estimate for an iterative positioning
algorithm.

POSITIONING BASED ON RANGE AND
RANGE RATE

The positioned UT is located at one of the two
Ž .intersections between three surfaces see Figure 1 :

Ž .the range sphere, the range-rate Doppler cone,
and the earth’s surface. The range sphere is cen-
tered at the satellite antenna, which is also where
the apex of the cone is located. The cone axis of

Ž .symmetry is the velocity vector. Delay range and
Ž .Doppler range-rate errors cause an error in the

determined UT position. The cross-track position-
ing error is magnified dramatically when the inter-
section is near the satellite subtrack on the earth’s
surface. An error in the UT assumed height above
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Fig. 1 � Three Surfaces Defining the UT Position

the reference earth surface causes further cross-
track positioning error, which also increases as the
UT gets closer to the subtrack.

The performances of such a positioning system
can be analytically derived for a simplified model
that assumes a flat earth and a straight-line orbit.
The validity of this assumption is demonstrated by
comparing analytic results using the flat earth
model with numerical results using a spherical
earth model.

The satellite-UT geometry in a flat earth model is
depicted in Figure 2. At t � 0, the satellite is at the
Ž .0, 0, H coordinate and moving in the y direction
with a velocity v. Both H and v are known accu-

Ž .rately. The stationary UT is at x, y, h . A flat
reference earth surface is assumed, represented by
the z � 0 plane. The range to the UT is given by

2 22'Ž . Ž . Ž . Ž .R t � x � y � vt � h � H 1

and the range rate by

Ž .�v y � vt˙ Ž . Ž .R t � 2
2 22' Ž . Ž .x � y � vt � h � H

Our simple analysis assumes that the range and
range rate, derived from the delay and Doppler
measurements, are free from bias errors, but suffer
from relatively small, independent, random errors
with zero mean and standard deviations of � andR
� , respectively. In reality, bias errors do exist. InṘ
Globalstar’s single-satellite positioning, random
measurement errors dominate the position error.
The bias errors become a dominant factor in two-
satellite positioning. Yet it should be noted that
even though the error contour maps in this paper
were derived assuming random, zero-mean mea-
surement errors, areas with large sensitivity to
random measurement errors are also sensitive to
bias measurement errors.

Ž .The UT location x, y is determined on the refer-
Ž .ence surface z � 0 plane , assuming erroneously

that h � 0. Later it is shown that a deviation of the
Ž .true elevation from the assumed elevation zero

results in a bias error in the estimated cross-track
Ž .x coordinate of the UT.

LOCATION ERROR AS FUNCTION OF
MEASUREMENT ERROR

The random errors in range and range rate cause
a UT position error. The position error is separated
into cross-track and along-track components, with
standard deviations of � and � , respectively. Thex y
transformation of errors from the measurement do-
main to the geometrical domain is done for t � 0,
and requires the partial derivatives of the measure-
ments with respect to the location parameters. At

Fig. 2 � Satellite-UT Geometry
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t � 0, the partial derivatives are given by

�R x
Ž .� 3

�x R

�R y
Ž .� 4

�y R

˙�R �xyv
Ž .� 53�x R

˙ 2�R v y
Ž .� 1 � 62ž /�y R R

They are arranged as a matrix of partial deriva-
tives:

�R �R

�x �y
Ž .H � 7˙ ˙�R �R

�x �y

The errors in range and range rate are assumed to
be independent. This assumption is well justified in
Globalstar, where the two measurements�delay
and Doppler�are nearly uncorrelated. The error

Žcovariance matrix is therefore diagonal. Correla-

.tion would result in nonzero off-diagonal elements.
Its inverse, also a diagonal matrix, is termed the
weight matrix:

1
02�R

Ž .W � 81
0 2

�Ṙ

The error variance of the estimated UT coordinates,
� �x and y, can be obtained from H and W 6 :

�12 TŽ . Ž .� � H WH 91, 1x

�12 TŽ . Ž .� � H WH 102, 2y

Ž . Ž .Symbolic solutions of equations 9 and 10 yield

22 2 2R y y22 2 Ž .� � � � 1 � � 11˙x R R2 2 2ž /x v R

R2 y 2
22 2 Ž .� � � � � 12˙y R R2 2v R

Figures 3 and 4 are contour maps of the cross-
track error, � , and the along-track error, � , re-x y

( )Fig. 3 � Cross-Track Location Error in kilometers
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( )Fig. 4 � Along-Track Location Error in kilometers

spectively, in kilometers, for the following typical
scenario: H � 1400 km, v � 7 km�s, � � 30 m,R
and � � 3 m�s. The most prominent feature is theṘ
large cross-track error in positioning UTs located

Ž .near the satellite subtrack cross-track � 0 . This
feature implies large geometric dilution of precision
Ž .GDOP near the subtrack. The poor GDOP stems
from the fact that on the subtrack, the circle drawn
on the earth’s surface by the intersection with the

Ž .range sphere Figure 1 is tangential to the hyper-
bola drawn on the earth’s surface by the intersec-
tion with the range-rate cone. Any small error in
range or range rate will cause a large cross-track
error in the calculated location.

As the UT location gets farther away from the
subtrack, the GDOP singularity is replaced by an-
other problem�ambiguity. Single-satellite posi-
tioning based on one pair of range and range-rate
measurements always yields two symmetrical solu-

Ž .tions on the two sides of the subtrack Figure 1 .
When the true UT location is far from the subtrack,
the two solutions are far from each other. In that
case, the true solution can be identified using infor-
mation from several satellite antenna beams. When
the true UT location is close to the subtrack, the

two solutions are close to each other and may both
fall within the illumination area of the same an-
tenna beam. In that case, the ambiguity cannot be
resolved.

Figures 3 and 4 are plots of the analytic results of
Ž . Ž .equations 11 and 12 , respectively, which were

derived using a flat earth model. To demonstrate
their validity for the real earth, a numerical error
analysis was performed using a spherical earth
model and a circular orbit. The result for the cross-
track error is presented in Figure 5. The excellent

Žagreement between Figures 3 and 5 and similar
agreement, not plotted, with respect to the along-

.track error proves that the use of a flat earth
Ž . Ž .model is justified, and that equations 11 and 12

apply to more realistic earth models.

ELEVATION-INDUCED ERROR

Ž . Ž .Equations 1 and 2 indicate that in both the
range and the range-rate measurement, the UT’s
elevation, h, and cross-track coordinate, x, are cou-

2 Ž .2pled together in the expression x � h � H .
Hence an error, �h, in the assumed elevation must
create an error, �x, in the cross-track coordinate.
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( )Fig. 5 � Cross-Track Location Error in kilometers Derived Numerically Using
Spherical Earth Model

To keep the expression unchanged, the following
relationship must hold

H � h H
Ž .�x � �h � �h 13

x x

Ž .According to equation 13 , when the cross-track
distance is approximately equal to the satellite
height, the elevation-induced cross-track error is
equal to the elevation error. Clearly the error in-
creases as the UT gets closer to the subtrack. In the
actual Globalstar positioning algorithm, the hori-
zontal position is first solved using sea-level eleva-
tion. Then the terrain elevation for the solved posi-
tion is obtained from a topographic map and used
instead of sea level, and an improved position is
obtained. Unless the terrain is very rough, conver-
gence is expected after two or three iterations.

The elevation-induced horizontal positioning er-
ror can be incorporated in the error contour maps
by declaring the elevation obtained from the topo-

graphic map to be a ‘measurement’ with error stan-
dard deviation � . The partial derivative andE
weight matrix are increased in size to 3 � 3:

�R �R �R

�x �y �h

˙ ˙ ˙�R �R �R
Ž .H � 14

�x �y �h
�h �h �h

�x �y �h

1
0 02�R

1
0 0 Ž .W � 152�Ṙ

1
0 0 2�E
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where the additional elements are

�R h � H
Ž .� 16

�h R

˙ Ž .�R � h � H yv
Ž .� 173�h R

�h �h �h
Ž .� 0, � 0, � 1 18

�x �y �h

The cross-track, along-track, and height error
variances are derived from the three diagonal ele-

Ž T .�1ments of the matrix H WH , yielding

2 22 2 2 Ž .R y y h � H
2 2 2 2� � � � 1 � � � �˙x R R E2 2 2 2ž /x v R x

Ž .19

R2 y 2
2 2 2 Ž .� � � � � 20˙y R R2 2v R

2 2 Ž .� � � 21h E

ŽNote that the along-track error expression equa-
Ž .. Ž Ž ..tion 20 is identical to the 2-D case equation 12 ;

hence Figure 4 holds for the 3-D case as well. The
Ž Ž ..cross-track error equation 19 differs from equa-

Ž .tion 11 in the additional term predicted by equa-
Ž .tion 13 . The slightly degraded cross-track error

contour map assuming an elevation measurement
error standard deviation of � � 200 m is pre-E
sented in Figure 6. There is no need to plot the
standard deviation of the error in the estimated
height since it must everywhere be equal to � , asE

Ž .indicated by equation 21 .

OTHER ERRORS

As the various error contour maps indicate, with
the expected random measurement error, typical

Žpositioning errors are between 0.5 and 10 km ex-
.cluding the area near the satellite subtrack . This

performance level can be considered coarse posi-
tioning, but it meets the system’s needs. Other
error sources, such as ionospheric effects and
ephemeris errors, that are considered in more accu-
rate positioning systems can be neglected in our
error analysis. The main remaining source of error
is UT velocity. UT velocity generates additional
Doppler, which effectively increases the range-rate
error. Because we are using a single Doppler mea-
surement, the fact that it is a bias rather than a
random error makes no difference, and the effect of

( )Fig. 6 � Cross-Track Location Error with Contribution from Elevation Error in kilometers
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UT velocity can be incorporated into the error anal-
ysis by increasing the range-rate random error.

POSITIONING ALGORITHM

The operational positioning algorithm applies to
all possible scenarios, including the two- and
three-satellite cases. The latter are overdetermined
systems, which invites a least-squares solution. The
general algorithm thus uses an iterative weighted
least-squares solution. Such an algorithm requires
an initial estimate of the UT location. A simple
approach to obtaining a good first estimate is to
solve explicitly the minimal set of two equations
Ž .measurements : the range and range rate to a
single satellite. One explicit solution is described in
Appendix B. In a single-satellite situation, the ex-
plicit solution can replace the iterative solution.

CONCLUSIONS

Autonomous positioning in Globalstar may neces-
sitate determining the UT position when only one
satellite is available. The random error analysis
presented in this paper demonstrates that with the
expected measurement accuracy, coarse position
can be determined instantly for UTs everywhere
except near the satellite subtrack.
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APPENDIX A
SEPARATING DOPPLER FROM
UT OSCILLATOR OFFSET

To determine the satellite-UT range rate, it is
necessary to separate the UT oscillator offset from

Ž .the Doppler shift in the satellite-UT leg . In an
unpublished report, Steven A. Kremm suggested a
method that applies when the UT uses the same
local oscillator for both transmit and receive. The
method is explained with the help of Figure A.1 and
the index below. It is assumed that the Doppler
shifts in the GW-satellite leg are perfectly known
and removed.

Ṙ � range rate of the satellite-to-UT leg
Ž .C � propagation velocity speed of light

f � forward link nominal carrier frequencyF
Ž .2500 MHz

f � reverse link nominal carrier frequencyR
Ž .1600 MHz

foff � normalized frequency offset of UT’s
f0 oscillator

Two measured frequencies are available at the
GW: the reported measurement from the UT

Ṙ foff Ž .f � f � � A-1meas, UT F ž /C f0

Fig. A.1 � Relationship Between Frequencies Used to Separate Doppler from Frequency Offset

Vol. 46, No. 2 Levanon: Instant Active Positioning with One LEO Satellite 93



and the measurement performed at the GW itself

Ṙ foff Ž .f � f � � A-2meas, GW R ž /C f0

Ž . Ž .Adding and subtracting equations A-1 and A-2
yields both the UT offset and the range rate:

f 1 f foff meas, GW meas, UT Ž .� � A-3ž /f 2 f f0 R F

C f fmeas, GW meas, UT˙ Ž .R � � � A-4ž /2 f fR F

APPENDIX B
DIRECT SOLUTION

The direct solution assumes a smooth ellipsoid
earth model and uses earth-centered, earth-fixed
Cartesian coordinates. There are many references
to direct solutions for geolocation using time-dif-

� �ference or frequency-difference measurement 7 .
However, the direct solution becomes very simple
when absolute measurements are available.

Definitions

ŽThe UT Cartesian coordinates earth-centered,
.earth-fixed are

T� � Ž .u � xyz B-1

Initially, the UT is assumed to be on a sphere of
Žradius r whose value is arbitrarily selected be-c

tween the equatorial earth radius r and the polarE
.earth radius r . That assumption yields the firstP

equation:

2 T 2 2 2 Ž .r � u u � x � y � z B-2c

Six satellite parameters at the measurement epoch

are known: the position coordinates

T� � Ž .s � x y z B-3s s s

and the velocities

T� � Ž .v � v v v B-4x y z

The radius of the satellite orbit is

2 T 2 2 2 Ž .r � s s � x � y � z B-5s s s s

The two available measurements are range

2 2 2� � Ž . Ž . Ž .'R � s � u � x � x � y � y � z � zs s s

Ž .B-6

and range rate

TŽ .s � u v
Ṙ �

r

1
Ž . Ž . Ž . Ž .� x � x v � y � y v � z � z v B-7s x s y s zr

Outline

Define

x ys s Ž .A � B-8v vx y

1
2 2 2� � Ž .b � r � r � R B-9s c2

T ˙ ˙ Ž .c � s v � RR � x v � y v � z v � RR B-10s x s y s z

Obtain

� � b zs�1 Ž .� A B-11c v� 	 z

The z coordinates of the UT’s true and mirror solu-
tions are obtained from

2 2 2 2 2 2Ž . Ž .Ž .'�� � �	 � �� � �	 � 1 � 	 � � � � � � rc Ž .z � B-12ˆ1, 2 2 21 � 	 � �
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and the remaining coordinates of the two solutions
are given by

Ž .x � � � �z B-13ˆ ˆ1, 2 1, 2

Ž .y � � � 	z B-14ˆ ˆ1, 2 1, 2

Resolving which of the two is the true solution
requires additional information. That information
can be obtained, for example, from the satellite
antenna beam through which the UT signal was
received.

Explanation

Ž .The range and range-rate equations B-6 and
Ž .B-7 can be rewritten as

T T� � � � Ž .s v u � b c B-15

Ž .where b and c are as defined in equations B-9 and
Ž . Ž .B-10 . From equation B-15 , x and y can be ex-
pressed as functions of z:

Ž .x � � � �z B-16

Ž .y � � � 	z B-17

where � , �, �, and 	 are as defined in equation
Ž . Ž . Ž .B-11 . Inserting equations B-16 and B-17 in

Ž .equation B-2 yields a quadratic equation of z

2 2 2 2Ž . Ž . Ž .� � �z � � � 	z � z � r B-18c

Ž .whose two solutions are given by equation B-12
above. Using the two solutions for z back in equa-

Ž . Ž .tions B-16 and B-17 yields the corresponding
two solutions for x and y, as given in equations
Ž . Ž .B-13 and B-14 above.

Ellipsoid Earth Model

The first improvement to the above simple solu-
tion is to assume that the UT is on an oblate
ellipsoid that has a polar radius r and an equato-P
rial radius r . From the Cartesian coordinatesE
derived assuming a spherical earth, we find sine
and cosine terms of the approximate geocentric lati-
tude 
�:

2 2'z x � y
Ž .sin 
� � ; cos 
� � B-19

r rc c

Using the ellipsoid model and the approximate geo-
centric latitude yields a more accurate distance to

the center of the earth:

r2
P2 Ž .r � B-20c 2rp2 2sin 
� � cos 
�ž /rE

ŽThis local earth radius for the approximate UT
. Ž .location is used in equation B-9 , and the direct

solution is repeated to yield more accurate Carte-
sian coordinates of the UT location.

When the direct solution is used to obtain a first
estimate for the iterative solution, the accuracy
achieved thus far is sufficient. If the direct solution
is used by itself, an elevation correction is required.
To obtain the elevation, the Cartesian coordinates
must be converted into longitude and geodetic lati-

� �tude 8 , the surface elevation for that location is
obtained from a digital terrain map, the distance to
the earth center is adjusted accordingly, and the
direct solution is repeated.
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