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Passive Array Tracking of a Continuous Wave
Transmitting Projectile

Abstract

Differential Doppler measurements by a passive array are used

to track an unstable continuous wave (CW) source moving in a
ballistic trajectory, e.g., a projectile carrying a proximity fuse.

The ballistic equations of motion couple frequency measure-
ments at various sections along the track with the track parameters
at any arbitrary time, e.g., at impact. A nonlinear weighted least-
square method is used to estimate the track parameters, and the re-
sulting error covariance matrix is derived. A numerical example
demonstrates the relative contributions of various frequency
measurements to the estimation accuracy.

Introduction

Tracking artillery and mortar projectiles is currently
done by radars. The increase use of proximity fuses (PF)
converts the projectile from a passive to an active target,
making passive tracking feasible. A continuous wave (CW)
transmitting source is the most difficult to track. Lack
of modulation means no time markers, preventing mea-
surement of the delay parameter. However, because many
PF are of the CW type, this paper does not utilize delay,
but only Doppler frequency measurements. The PF trans-
mitter is usually a fundamental power oscillator whose
frequency may change slowly during the flight. For this
reason only differential Doppler shift is used.

Fig. 1 shows the relevant geometrical picture. The
source (projectile) follows the indicated track and radiates
a sinusoidal signal towards a spatially separated array of
receivers. Each receiver is contaminated by Gaussian
noise so that the actual waveshape observed at the ith
receiver is given by

Pi(t) =4, sin(wl.t —6)+ n(r). 1)

All the information concerning source trajectory is con-
tained in the relative frequency and phase of the signal
to several receivers; however, the only quantity access-
ible to measurement is the differential frequency shift
(w; - wj) between pairs of receivers. We assume perfect
propagation conditions in the medium between source
and receiver. In this case, the instantaneous differential
Doppler shift is given by

w,—w, = ”(;i - fj) 2 w/\ )

where A is the radiated wavelength; r; and 7; are, respec-
tively, range and range rate between source and ith re-
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Fig. 1. Array-source geometry.

ceiver. In a Cartesian coordinate system 7; is given by

rEl=f +—g) +(z-h))% 3)
where x, y, z are the instantaneous position components
measured in some convenient coordinate system and

(fi» &i, h;) determines the location of the ith receiver

in that coordinate system. Differentiating (3) with re-
spect to ¢ yields

Fo= L0 = R+ 00 - gD + (2 — h)E)A[CGx - £)?

t-g) t(E—-h)]"} . )
Until now no assumption concerning source trajectory

has been made. We shall assume that the ballistic motion

of the projectile is governed by two accelerations: gravity

and drag. Simplified expressions for the accelerations

along the three directions are

¥=—Be LZ 2 +yr +2%) " x (5a)
y=—Be L2 (2437 420y (5b)
z=—Be LZ(x2+32+22): ¢ (5¢)

where g is the acceleration due to gravity (= 9.8m/s?)
and L represents the change of air density with altitude
(=10™*m™). B, the ballistic constant, is given by the
formula
B=mno CyS/2M 6)
where 1y is the air density at the array altitude (z = 0).
Cp is the drag coefficient. S and M are, respectively,
the effective area and the mass of the projectile. From
(5a) and (5b) one can clearly see that X/y = x/y. This
presentation, therefore, assumes that the projectile
maintains the direction of its horizontal component of
flight.

If all the constants appearing in (5) are known, the
parameter vector
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s = (xn’yn’ 20 X Y én )T ™
of position and velocity components at some arbitrary

time instant ¢ = ¢, along the path completely characterizes
source trajectory (as a function of time). For our purposes
t, may be associated with the time of impact. The set

of track parameters at a different time instant can be
obtained from the components of s() by backward (for-
ward) integration of the equations of motion [(5a)

through (5¢)] along the time elapsed using the interpo-
lation formulas

X, =X —Arx (8a)
Xe | =X —ArX, . (8b)
The vectors in (8) are

X = (g ¥y 2" (92)
%, = Gopr g 2" (9b)
X, = G Vg 27 (9¢)

where At =13 — t;_1. A set of higher order interpo-
lation formulas is given later.

Our objective is, therefore, to estimate the set of track
parameters s() using differential Doppler shift measure-
ments.

Estimation of Track Parameters

If the array consists of m receivers, there are (m — 1)
linearly independent differential Doppler shifts during
each observation period, obtainable by choosing one as a
reference receiver and comparing its input with that of
every other receiver. Thus the total set of differential
Dopplers consists of

= 2
aw=awD, 2D, aw O 4w aw @ )T

(10)

where Aw(’;,) is the differential frequency shifts between
the receivers of the pth pair during the kth observation
period. We assume negligible change in array-source geom-
etry during each observation period; thus the compo-
nents of Aw are essentially time invariant. A more gen-
eral approach which takes into account the time variations
of the differential Doppler shifts (thus large-scale change
in array-source geometry even during a single observation
period) is discussed in [1].

The subset {Aw(];} };’::”11 of differential Doppler
shifts is uniquely determined by s(k), the vector of track

parameters which characterizes source trajectory during
the kth observation period. Furthermore, the components
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of s(k) can be expressed in terms of the components of
s(n), the desired set of track parameters, using the inter-
polation formulas (8a)-(8b). The various elements of Aw
are therefore functionals of s(?) and one can write form-
ally

Aw = G(s™)y . (11)
Conversley, if a sufficient set of differential Doppler

shifts is known, the s(*) components are uniquely deter-
mined by the Aw components. For the moment we

only point out that the number of required differential
Doppler parameters must be at least equal to the number
of unknown track parameters. Increases in the number

of Aw components above this minimum improves tra-
jectory estimates. Reduction in the number of Aw com-
ponents below the minimum leads to a singular problem
and hence complete failure of track estimation.

In practice, « measurement of Aw contains a random
error due to the additive noise component. A complete
analysis of the ineasurement procedure is given in [2].
Here we assume spatially incoherent and spectrally
white noise (over the receiver frequency band).! In that
case, errors in measurements of the various Aw compo-
nents are statistically independent, each of which assumes
the mean square value.

El@w®) — aw®)) = 1273 (4% vk

2

+ [0 N ) (12)
where Aw(];) is the estimated value of Aw(llg). El]
stands for the statistical expectation of the bracketed
quantity, T denotes the kth observation period.
N(;;' ) and A(’; ) are, respectively, the noise spectral level
and the signal amplitude at the pth receiver during that
time period. For sinusoidal signals, the receiver frequency
band is determined by the inverse of the observation
period. Thus the quantity

k) = 4002 Ak 1
SNR(p) —A(p) /N(p) T, (13)
is the signal-to-noise power ratio at the pth receiver dur-
ing T.

The estimation problem can now be stated as follows:
Given the vector measurement Aw, find the minimum
mean square estimate s(?) of s(*). In other words, §(7)
is that value of s(") which minimizes the quantity

[aw — G(s"™)]T cov! (aw) [Aw — G(s™)] (14)

where cov(Aw) is the measurement error covariance matrix.

LEf the receivers are separated by a sufficient distance so that
there can be significant differential Doppler shifts, then the
assumption of spatially incoherent (statistically independent
from receiver to receiver) noise is likely to be very good (an
exception would be noise contributed by an interfering point
source).

CORRKESPONDENCE

In light of the previous discussion, it assumes a diagonal
form with the diagonal elements given by (12).

To simplify the form of (14), we assume equal signal-
to-noise ratio conditions (SNR) for all ¥ and p combina-
tions in (13). For equal measurement periods (7)), cov(Aw)
assumes the simplified form
cov(Aw) = (24/T?* SNR) I . (15)
With this convention s (), the estimate of the projectile
position at ¢ = t,,, is obtained by minimizing the norm of
the vector [Aw — G(s())],ie.,

min () {a% - G™)] T [aw - GE™)] 15T . (16)

The authors have successfully used the iterative algo-
rithm described in [3], which is available as subroutine
ZXSSQ in the International Mathematical and Statis-
tical Library (IMSL).

With regard to the question of the initial guess required
for such an iterative algorithm, it should be recalled that
the a priori information on the expected trajectory of
the projectile is rather accurate. Thus the expected target
characterization could serve as the initial guess.

Estimation Performance

In the previous section we have discussed the pro-
cedure for estimating the track parameters at ¢, by
utilizing differential Doppler shifts measured at various
periods tx along the track. This section presents a tech-
nique for evaluating the performance of that estimation
procedure and demonstrates its optimality.

In order to estimate performance, let us assume that
our estimate s(7) is in the neighborhood of the true value
s(). One can therefore write, to a very good approxima-
tion,

GE™) =Gy + DE™ — ™) (17)

where D is the matrix of partial derivatives
D= [aAw<f, Y/as™M] . (18)

An explicit description of D is given in the Appendix.
Substitution of (17) in (16) results in a linear-weighted
least-square problem whose solution is [4].2

s _ 5™ = (pTpy*pT(Aw — Aw) (19)

2Equation (19) may describe a linear equation for small addi-
tive correction in the estimated value. In that case, s(") repre-
sents a trial solution of the minimization problem of (16), and
s:(”) represents the iterated value. The foregoing process can be
repeated until the correction is negligible.
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Fig. 2. Source altitude versus time in numerical cxample.

where Aw = G(s(")). Taking the second-order moment
on both sides of (19), one obtains

cov(s") = (DTD)" D coviaw) D (D' D)
= (24/T? SNR)(D' D)™ . (20)

In the second version of (20) we have used the simplified
form of cov(Aw) given in (15).

Successive substitutions of (A1) and (A4) in (20) yield
a final form of cov(s(m)),

cov(s") = (24/T*SNR) | Z;DWT pF
=(24/T? SNR){ 2 [P(1, ) b(t,, ]!

S PG 0(,, )] T @2
where P and & are defined throughout (AS)-(A7) and
(A9)-(A12), respectively, and k sums over all time

periods in which measurements are available.

Discussion

Our estimation procedure utilizes a nonlinear least-
square algorithm with simultaneous processing of all
the data jointly. Yet a computationally more attractive
procedure is to use a recursive approach, i.e., to obtain
an initial estimate of s(?) from only a minimal set of
differential measurements (= 6) and then to update the
estimate whenever additional measurements become
available. In this situation, there is no need to store
past measurements,and the se.  simultaneous nonlinear
equations required in the estimation process is reduced.
If the initial estimate is in the neighborhood of the true
value, one can linearize the updating matrix (the so-
called extended Kalman filter), as was done in (19), to
reduce computational complexity.

Our objective was to minimize the mean-square esti-
mation error. Toward that objective the recursive pro-
cedure is likely to be suboptimal. On the other hand,
one can show that the error covariance matrix given by
(20) or (21) is, in fact, the absolute lower bound given
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by the inverse of the Fisher information matrix {5].
Thus simultaneous processing of all the received data
jointly clearly results in a minimum mean-square error
estimate of 7).

The number of Aw components required for the esti-
mation procedure must be at least equal to the number
of unknown track parameters. Practically it may be
difficult to find seven receiver locations within the
limited area of the array-yielding frequency measurements
which are significantly different from one another. Thus
differential Doppler measurements from a single obser-
vation period may not be sufficient for the localization
procedure. However, one can use the time evolution of
differential Doppler measurements observed at one re-
ceiver pair to characterize the trajectory (up to an ambiguity
due to symmetry). Additional receivers improve local-
ization accuracy but are not indispensable for the local-
ization procedure.

An important practical question is therefore the deter-
mination of a set Aw large enough to obtain near-optimal
performance but small enough to keep problems of mea-
surement and computation within reasonable bounds.
The following numerical example illustrates the preceding
considerations.

Numerical Example

The trajectory chosen for the example is determined
by the initial track parameters

s(0) = (45446, 1221.6,0,62.76,172.43,262.0)" .

The first three entries are measured in meters, the last
three entries in meters per second. The trajectory is ob-
tained by integration of the equations of motion (with
B=10"m™). Using an integration step of Az =1 s
yields z(), as shown in Fig. 2. Since z = 0 was crossed
during the forty-sixth second of flight, the track param-
eters were estimated at ¢,, =45 s. For reference, the
actual set is

s(45) = (-2558.23,4235.87,62.18,31.34,86.12, — 196.73)"

Three receivers were used, located at (0, 0, 0), (—5,0,0),
and (—b, ~ b, 0), where b = 100 m.

Fiz. 3 shows the normalized rms error in the estimate
of the x-coordinate of source position at r =45 s [given
by the square root of the (I, 1) element of (21)]. First
a minimal set of three measurement periods were used,
taken at the forty-fifth, forty-fourth, and forty-third
seconds of the flight. Curve a describes the evolution of
the estimation error as one adds additional measurements
going backward one second at a time. Thus the horizon-
tal coordinate determines the earliest time of the flight
in which measurements are available. One can clearly
see that the improvement in accuracy with additional
measurements (given by the slope) is more significant
initially.
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Curve b in Fig. 3 gives the error when measurements
are added every two seconds along the flight. The dura-
tion of each measurement period could now be twice as
long as that used in curve @, while the error difference
between the curves is smaller than a factor of 23/2. As
the error is linearly related to 7-3/2 (through SNR), the
conclusion from the above is that fewer but longer mea-
surement periods improve estimation accuracy. Note,
however, that the frequency measurements used in the
estimation process contain bias terms resulting from the
assumption that there is a negligible change in array-
source geometry during each measurement period. The
magnitude of this bias increases as T increases.

Both curves ¢ and d are due to a minimal set of three
equally spaced measurements. In ¢ the measurement
periods are spread at t =45,45 —j,and 45 — 2i. Ind
the three measurements are consecutive, 1 second apart.
Both errors are given as a function of the time of the
first measurement period. It is interesting to note that
the separated periods (curve ¢) yielded significantly smaller
error than the consecutive periods (curve d). The two
singular points in curve d indicate that in some parts of
the trajectory, the minimal set of consecutive measure-
ments is insufficient.

The numerical example was repeated for twice as long
a baseline (b = 200). On the average the error, o(x), was
reduced by a factor of 2. In order to obtain actual values
of the rms error one must scale Fig. 3 by the normalizing
constant A/T(SNR)"2. The right vertical axis of Fig. 3
was scaled for SNR = 1000, A =0.33 m, and 7 = Is. The
scaling factor could be rewritten as ¢/fT(SNR)" where
c is the velocity of propagation and f'is the radiated fre-
quency. It is interesting to note that the most critical
feature in this scale factor is 7, the total number of
“carrier” cycles in the observation interval.

Bias Error

Our discussion thus far has dealt with the random
error in $(7) resulting from the random error in the
measurement of Aw. Among the sources for bias error
are the noninfinitesimal interpolation step, Az, and the
difference between our rather simple ballistic model and
the true motion of the projectile. The first source of
bias error can be considerably reduced by replacing the
linear interpolation formulas given in set (8) with higher
order formulas

X, 1 =% —Arx +H(1/2)(A0? x, (224)
X, 1 =X — Arx +(1/2) (A0 [(9%,/3%,) X,
-+ (0%, /0x,) X, ] (22B)

where the two partial derivative matrices are as given
in (A11) and (A12).

Without in-depth discussion of more detailed ballistic
models, our discussion of the second source of bias error
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Fig. 3. Rms position error in x direction versus time of first
measurement. Measurements taken every (a) 1 s;(b) 2s;
(c) (45 — 1)/2 s;and {(d) 1 s (only 3 measurement periods in
(¢) and (d).

has to remain qualitative. Intuitively, it seems that the
further along the trajectory the measurement is from

the point of interest (e.g., impact), the larger is its con-
tribution to bias error. Thus, while Fig. 3 (curve a) in-
dicates that adding earlier measurements always reduces
the random error, bias error considerations are likely to
show that beyond a certain point, adding earlier measure-
ments will increase the bias error, and maybe the overall
error. An indication to that effect was obtained from
the numerical example above, when the ballistic constant
used in the estimation process was 25 percent higher than
the one used in generating the trajectory and the measure-
ment vector Aw. In that case, the minimum bias error

at impact was achieved when the measurements started

at t = 35 s. Adding earlier measurements increased the
bias error.

Such bias error considerations indicate that the a priori
information on the trajectory, derived from initial position
and muzzle velocity, could not add significantly to the
estimation procedure, except for providing the first guess.

Summary and Conclusions

Passive tracking, which is widely used in sonar, is
adapted here to an electromagnetic application of a
projectile carrying a CW source. The availability of
the source and the fairly well-known model of the
projectile motion are combined to provide a feasible
tracking technique. Where applicable, this technique
can replace costly active radar tracking.

A least-square estimation procedure was suggested
and outlined in detail. Furthermore, we have given a
performance analysis for evaluating the lower bound on
the random error in the estimation due to the additive
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noise component. The performance analysis was applied
to a numerical example in order to show the relative
estimation error for various combinations of measuring
periods along the track. Bias error was briefly discussed,
and together with implementation techniques, are the
topics for ongoing work.

Appendix
Partial Derivative Matrix D

The matrix D can be decoupled as follows:
D=0W p? p® T (A1)

The (m — 1) X 6 submatrix D(k) is associated with the
kth measurement period. Its elements are given by

DY = daw) s (A2)

where s is the ith component of s"). Making use of
the chain rule

6
aawRps) = 2 {pawDps Q115 Q/asP1} (a3)
D™ can be further decoupled into the form
k) 2

D =Pt )2 . 1)) (A4)
where P(z, ) is the matrix whose elements are

= (k) o (k) _ (k) o (k)
P(tkzn_ dAw » Jos';” = n/N )7 [as';

s (k) o (K)

—or' Vfast)) . (AS)

In the second version of (A5) we used (2). Ag is the

radiated wavelength during the kth observation period.
The derivatives called for in (A5) are obtained from (4)

. k - .

or D jox, = {0y —8,)° + G — 1)1 &,

- (xk _fp)[éyk _gp)‘i’k + (zk - hp) 2k] }/

(G = 1)+ O — )" + (2 — )] (A6)
07 (o3, = (xy — 1)

[Cep = 1,0 + O~ 8,)* + (5, — )" 17" (A7)
In complete symmetry one can write down immediately
the derivatives with respect to y, 3, z, and z.

The second matrix term®(t,,, t)-appearing in (A4)

characterizes the transition from #; to t,,. Its (i, j) ele-
ment is given by

@, 1), = as<j.‘>/as(]'.’) ) (A8)
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Using the chain rule successively one immediately obtains

n—k

o1, 1) = 191 ®(, +idt, 1, + (- 1) Ar) (A9)

where ¢, =ty + (n — k)At. Differentiation of the inter-
polation formulas (8) results in the basic element of the
matrix multiplication

I | —Ard
<1>(tk, I —A)= |- — — — — — - —— - -4 (Al0)
1
! )
~A3x, /ox,) | T— Af(3x, /0, ) l
where
. —-Lz P oo,
o fox =LBe Kl | 010 %, (A11)
and
. . ~L zk . . T .
dx,/ox = -Be (|%, |I+xk xk/|xki) (A12)
where 0 is the (3 X 1) zero vector. |x, | is the norm
(magnitude) of the velocity vector X given by
%, | =G2+32+22)" . (A13)
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