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We propose the use of a new encoding mask in order to improve the performance of the conventional time multi-
plexing super resolution method. The resolution improvement is obtained using a 2D Barker-based array that is
placed upon the object and shifted laterally. The Barker-based array is a 2D generalization of the standard 1D Barker
code. The Barker-based array has stable autocorrelation sidelobes, making it ideal for the encoding process. A se-
quence of low resolution images are captured at different positions of the array, and are decoded properly using the
same array. After removing the low resolution image from the resulting reconstruction, a high resolution image is
established. The proposed method is presented analytically, demonstrated via numerical simulation, and validated

by laboratory experiment.
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The resolution of an imaging lens with a finite aperture is
limited by diffraction. The minimum distance between
two nearby points that still allows for separation between
them was pronounced by Abbe to be proportional to the
optical wavelength and to the F' number of the imaging
system [1]. Super resolution (SR) techniques aim to over-
come the diffraction limitation. The main concept in SR
approaches is that high resolution (HR) spatial informa-
tion can be obtained if some a priori information on the
object exists. Using this a priori information one may
sacrifice other dimensions in order to achieve informa-
tion in the spatial domain [2-5]. The sacrificed axes,
which may be used for multiplexing the additional spatial
resolution, can be, for instance, time [6,7], wavelength
[8,9], field of view [10,11], polarization [12,13], dynamic
range [14,15], etc.

Time multiplexing super resolution (TMSR) is perhaps
the most common SR technique that overcomes the dif-
fraction limitation. The original concept, suggested by
Francon [6], included two scanning pinholes, one at the
object plane, and one in the image plane. This method is
highly time consuming, since the entire object needs to
be scanned point by point. A second approach was sug-
gested by Lukosz [7], and included two moving gratings.
The first grating is placed near the object and is used for
encoding the spatial information. The second grating is
placed near the detector, or added digitally by computer
means [16], and is used for decoding the spatial informa-
tion. The two gratings are shifted between frames during
the imaging sequence. For a 1D SR, the grating shift is
relatively simple. However, in order to achieve 2D SR,
the gratings need to be shifted in both directions. Another
approach is using a random noise as the encoding and
decoding masks [17]. This method relies on the autocor-
relation (AC) of the random noise mask. Since the noise
is random in all directions, a 1D shift can achieve 2D SR.
However, the variance of the sidelobes of the AC is on the
order of the square root of the number of images. Thus,
reducing the variance of the sidelobes requires a great
number of images, usually hundreds. Another method
is regarding the SR process as an inverse problem
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[18]. This method has an inherent difficulty, which is
to avoid amplifying the noise during the inverse process
(this is common for all inverse problems). In addition, the
system matrix itself is ill conditioned, presenting the
challenge of inverting the matrix in a numerically stable
fashion [19].

In this Letter we propose using a binary transmission
Barker-based array as the encoding and decoding mask
in the conventional TMSR method. The proposed array is
a 2D generalization of the 1D Barker code [20], which is
widely used in radar signals [21]. The proposed method
has several advantages over the previous ones; a 1D
scanning generates 2D SR, regardless of the scanning
direction. The process requires significantly less images
than the random noise method. The method does not
require an inverse process, and thus noises effects will
not be amplified during the SR process.

A Barker code is a bipolar sequence at length N, where
each bit has a value of -1 or 1. This sequence has an ideal
aperiodic AC property such that the peak magnitude
equals N and the sidelobe magnitudes are 0 or 1. All
the Barker codes exhibit a two-valued cyclic (periodic)
AC, namely constant sidelobes values. In optical ampli-
tude masks -1 is not a legitimate value and thus each -1
in the Barker code is replaced by 0. The modified
(unipolar) Barker sequence maintains the property of a
two-valued cyclic AC.

A 2D unipolar Barker array will be optimal for TMSR.
Unfortunately, this kind of array does not exist for more
than a 2 x 2 array [22,23]. Instead, a generalization of the
Barker code into a 2D array was performed as follows:
the first row in the array is a standard 1D Barker code,
and each row in the array is shifted with respect to the
previous row.

The longest reported Barker code is 13 bits long [24].
Using its unipolar representation [1111100110101], a
13 x 13 array was established. The process is as follows.
Each row in the array is shifted 5 pixels to the right in
respect to the previous row. This 2D array is presented
in Fig. 1(a). One may notice that by using the 5 pixels
shift between rows, each column in the array is a cyclic

© 2015 Optical Society of America


http://dx.doi.org/10.1364/OL.40.000163

164 OPTICS LETTERS / Vol. 40, No. 2 / January 15, 2015

(@ (b)
Fig. 1. (a) 13 x 13 Barker-based array, where each row is a

5 pixel shift of the previous row; (b) cyclic AC of the 13 x 13
Barker-based array. Pixel values: white, 1, gray, 2/3, black, 0.

shift of a 13-bit Ipatov code [1110010111110] [21] which,
while not Barker, also exhibits a two-valued cyclic
AC. The cyclic AC of the 13 x 13 example is presented
in Fig. 1(b). The cyclic AC has N peaks equal to 1, with
a distance between each two peaks of ,/13. The side-
lobes between the peaks have a constant value of 2/3.

Following the conventional TMSR 4f system (pre-
sented in Fig. 2), the blurred output intensity before
the second mask is given by

Ting.y.0) = f / L@ %)

M, (@ -vt,y)p(x -2,y -y)dxr'dy, (D

where I, is the object intensity, M; is the encoding
mask, v is its velocity, and p is the point spread function
(PSF).

The decoding process involves multiplying each image
with the appropriate decoding mask, M5, and integrating
over time,

oo
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Since only the masks are time dependent, changing the
integral order is allowed. Assuming M; and M, are the
same Barker-based array, denoted by M, the time integral
becomes

/mM(x—vt,y)M(x“ —-vt,y)dt = Z(S(x—x’,y -y) +ec
3
The result is a set of Dirac deltas plus a constant [as

presented in the 13-bit example in Fig. 1(b)]. Introducing
the time integral into Eq. (2) yields
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Fig. 2. Conventional TMSR 4f system.
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Assuming the PSF is smaller than the distance between
two peaks, the integral becomes

R(v,y) = p(0,0)] (%, y) + ¢ - LRI, 5)
where LRI is the LR image.

In order to achieve the HR image, the LR image
(which is known) needs to be subtracted from the
reconstruction. As mentioned before, the method will
work as long as the PSF is smaller than the distance be-
tween peaks, which in our examples is /13 or 3.6 pixels
in the image plane.

In the numerical simulation the proposed 13 x 13 array
was tested. The Barkar-based masks were cyclic, in order
to cover the entire object. The mask speed was 1 pixel
per frame. Thirteen LR images that simulated the mask
movement were generated. The LR images had a resolu-
tion 3 times smaller than the HR images. The suggested
process was tested on two different objects: a 1951 USAF
target, and a “Lena” image. The SR results for the USAF
target are presented in Fig. 3. Figure 3(a) is the HR image,
Fig. 3(b) is the LR image, Fig. 3(c) is the reconstructed
image using 13 LR images of a moving random mask, and
Fig. 3(d) is the SR image using the Barker-based mask. It
is clearly seen that the proposed method yields better
results than the random mask method.

The “Lena” image was also tested, in order to demon-
strate the applicability of the proposed method for a gray
scale object. The results for the “Lena” image are pre-
sented in Fig. 4. Figure 4(a) is the HR image, Fig. 4(b) is
the LR image, and Fig. 4(c) is the SR image.
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Fig. 3. SR simulation results of a USAF target using the pro-
posed 13 x 13 Barker-based array: (a) HR image, (b) LR image,

(c) reconstructed image using a moving random mask, and
(d) SR using the Barker-based mask.
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Fig. 4. SR simulation results of the “Lena” image using the pro-
posed 13 x 13 Barker-based array: (a) HR image, (b) LR image,
and (c) SR image.
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Fig. 5. Experimental setup illustration: a camera looking
down on a 1951 USAF target, covered by a moving cyclic
Barker-based array.

In order to experimentally test the proposed method, a
simple imaging system was built in the laboratory. The
object was a USAF target. The mask was a 13 x 13 cyclic
Barker-based array with a 1 mm feature size. The mask
was placed on top of the object and shifted laterally in
1 mm increments using a linear translation stage.
Thirteen LR images were captured using a standard
USB camera (Thorlabs DCC1545M) and an 8 mm lens
(Navitar NMV-8) located 500 mm above the object.
The mask feature size was chosen in order to fulfill
the spatial sampling condition [25], making sure that it
is sampled at least twice by the camera pixels. This
has two implications: first, the resolution improvement
is limited to the mask feature size (which is about
3 x 3 pixels in the object plane), and second, the LR PSF
needs to be smaller than the distance between the AC
peaks, which in this case is 3 x 4/13 or 10.8 pixels in
the image plane. The LR images in the experiment had
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Fig. 6. SR experimental results: (a) HR reference image,
(b) LR image, and (c) SR image using the proposed method.
The squares represent the last separable frequency in the LR
and SR images.
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resolutions about 9 times smaller than HR reference
images. The setup illustration is presented in Fig. 5.

The SR results, obtained using the proposed technique,
are presented in Fig. 6. Figure 6(a) is the HR reference
image, Fig. 6(b) is the LR image, and Fig. 6(c) is the SR
image. The resolution improvement is clearly visible, not
only in the marked bars that mark the last separable fre-
quency, but also in the numbers in the target. One may
notice that the SR image is pixelated, with a feature
size of about 3 x 3 pixels, due to the feature size of the
encoding mask.

To conclude, a new encoding mask for the conven-
tional TMSR method was presented. The mask is a 2D
Barker-based array, which is a generalization of the
well-known 1D Barker code. Due to the unique AC prop-
erties of the proposed array, only a small number of
images are required in order to achieve a SR image.
The proposed technique was numerically simulated, and
laboratory experimented, demonstrating resolution im-
provement by a factor of 3. Using a fast motorized linear
stage for the mask shift, and proper imaging software, the
SR process may take less than 1 second.
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