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Achieving n-Fold Increase in the Unambiguous Radar Range
of a Uniform Pulse Train by Turning Off Every

n’th Pulse (for n = 3, 4, 5 . . . )
Nadav Levanon , Life Fellow, IEEE

Abstract— This correspondence addresses the radar challenge of
extending the unambiguous delay in a uniform pulse train beyond the
pulse repetition interval (PRI). The proposed approach involves dividing
the streaming transmitted pulses into consecutive groups, each comprising
n pulses. These n transmitted pulses undergo overlay with a coded
sequence Sn (e.g., S3 = {1 1 0}). Concurrently, the corresponding n
reference pulses in the receiver undergo overlay with a coded sequence
Rn (e.g., R3 = {1 1 −1}), requiring a sidelobe-free periodic cross-
correlation between Sn and Rn. The initially identical transmitted pulses
may be either plain or compressed, and the corresponding reference
pulses can be matched or mismatched. This innovative approach extends
the unambiguous range by a factor of n. However, it does not address the
issue of masked target returns coinciding with detection of the system’s
own pulses, when the isolation of own pulses is insufficient and they
saturate the receiver. Notably, the proposed approach is applicable to both
coherent and non-coherent systems such as Lidar. However, our emphasis
here is mainly on non-coherent systems. The presentation includes simple
examples with n values of 3, 4, and 5, and considers system performances
in the presence of noise.

Index Terms— Binary sequences, Lidar, mismatched filters, non-
coherent radar, radar waveforms, range sidelobes, unambiguous range.

I. INTRODUCTION

THE unambiguous range RU A of a radar transmitting a uniform
pulse train is basically

RU A =
1
2 CTr (1)

where C is the propagation velocity and Tr is the PRI. A related
well known result, relevant to coherent pulse-Doppler radar [1], [2]
transmiting a train of identical pulses, posits that the unamiguous
Doppler is

νU A = 1
/

Tr . (2)

Extending the unambiguous range by increasing the PRI reduces
the emitted energy per unit time, which reduces the probability of
target detection. In coherent systems, this extension also brings about
a reduction of the unambiguous Doppler. The widely adopted “stag-
gered PRI” technique divides the on-target dwell time into multiple
coherent processing intervals (CPI), each employing a distinct PRI
[1], [2]. Staggered PRI necessiates detection in a portion of the
CPIs, introducing some inefficiency in terms of both transmitted
energy and detection time. Conversly, staggered PRI addresses the
issue of masking by own pulses, a challenge not fully resolved by
our method. Another alternative aproach is diversifying the pulse
train by overlaying inter-pulse modulation or coding [3, ch.9]. In
a coherent radar system, the overlaid coding can encompass phase or
frequency inter-pulse coding. A crucial objective is that the periodic
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overlay will exhibit perfect periodic correlation (PPC), leading to a
sidelobe-free response. In certain scenarios, achieving a PPC response
involves overlaying different codes - one on the transmitted pulses
and another on the reference pulses, the later being numerically stored
in the receiver. The two overlays need not be identical, provided their
cross-correlation produces PPC [4]. A recent concept utilize pseudo-
random, pulse-to-pulse, PRI staggering [5]. The distinctive feature of
our proposed overlay coding is its applicability to both coherent and
non-coherent systems [6], [7], [8], [9], [10].

The approach proposed here is to split the streaming identi-
cal transmitted pulses into consecutive groups, each containing
n pulses. The n transmitted pulses are overlaid by an ON-OFF
coded sequence Sn (e.g., S3 = {1 1 0}), and the corresponding n
reference pulses in the receiver are overlaid by coded sequence
Rn (e.g., R3 = {1 1 − 1}), such that the periodic cross-correlation
(PCC) between Sn and Rn is perfect, namely free of sidelobes.

The simulations in this concise correspondence focus on
non-coherent radar or lidar systems. However, it is important to
highlight a significant implication for coherent systems. When a
coherent pulse-Doppler radar processes a train of identical p pulses,
the periodicity is Tr , and the unambiguous Doppler is as in (2).
Contrastingly, when the p pulses are partitioned into identical groups,
each group containing n differently coded pulses, the periodicity
becomes nTr . In a coherent system that periodicity will reduce the
unambiguous Doppler to

νU A = 1
/
(nTr ). (3)

It should be pointed out that a field experiment [8], [9] conducted
in 2008, employed a considerably more elaborate ON-OFF overlay
sequence, yet succeeded in extending the unambiguous range. The
experiment utilized a Furuno magnetron marine radar, which is
non-coherent.

II. NON-COHERENT PULSE TRAIN

Our initial examples will use a simple train of unmodulated pulses.
The most simple overlay is based on a Barker 3 sequense, where
the reference sequense is R3 ={1 1 −1} and the ON-OFF coded
transmitted sequence is S3 ={1 1 0}. The periodic cross-correlation
sequence between R3 and S3 is {2 0 0}. The zero sidelobes indicate
perfect periodic cross-correlation (PPCC). Fig. 1 shows one period
of the expected noise-free and clutter-free output of the receiver
processor, when there is only one target at an ambiguous delay. The
top subplot shows the received own pulses (black), where pulse #3 is
not emmited according to S3. It also shows the detected target (red) at
a delay longer than the PRI. The middle subplot shows the reference
pulses, where the 3’rd pulse is negative, according to R3. Recall that
the processor in the receiver can use any real or complex value. The
bottom subplot displays the periodic cross-correlation output, with
periodicity of 3Tr . Note the target’s peak (in red) at its true delay,
which is slightly longer than Tr .
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Fig. 1. 3-fold case: (top) Detected own pulses and target return at ambiguous
delay, (middle) Reference pulses, (bottom) cross-correlation output. Tr = 100,
pulse width = 12.

Longer unipolar sequences can be transmitted to obtain longer
n-fold increases of the unambiguous range. When only one pulse
is eliminated from a periodic overlay comprising n pulses, then for
any n > 2 the sequences design rule is,

Sn = {s1 s2 . . . sk . . . sn}, sk =

{
1 , k < n
0 , k = n

(4)

Rn = {r1 r2 . . . rk . . . rn}, rk =

{
1 , k < n
−(n − 2) , k = n

(5)

The fact that the Sn and Rn sequences are different implies a
mismatch. Mismatch usually entails some loss in the signal-to-noise
ratio (SNR). That loss grows as the negative element of Rn grows,
because when the codes are aligned that element multiplies a received
element containing noise only. Similarly to Fig. 1, Fig. 2 displays the
5-fold example.

The non-coherent identical transmitted pulses in the processing
interval need not be plain. The pulses can be identically intra-pulse
coded, to allow pulse compresion in the receiver. However, because
the receiver utilizes an envelope detector, the relevant transmitted
intra-pulse coding can only be ON-OFF type, namely, utilize only
two values {1, 0}. In the 3-fold, noise-free example, presented in
Fig. 3, the transmitted pulses were intra-pulse coded by unipolar
Barker 5 {1 1 1 0 1}. Achieving acceptable pulse compression
with such a sequence requires a mismatched filter (MMF) in the
receiver. The one used in Fig. 3 was {0.0484 −0.4319 −0.3714
0.4763 0.9365 0.4844 −1.0576 0.9365 −0.2947 −0.3552 0.3552}
generated according to [11]. The top subplot of Fig. 3 contains

Fig. 2. 5-fold case: (top) detected own pulses and target return at ambiguous
delay, (middle) reference pulses, (bottom) cross-correlation output.

Fig. 3. Compressed pulses: (top) received own ON-OFF pulses and
returns from a point target, (middle) overlaid mismatched reference, (bottom)
cross-correlation output. Tr = 100.

12 pulses, intra-pulse coded by unipolar Barker 5. The 12 pulses are
overlaid by 3 unipolar Barker 3 sequences {1 1 0}, hence every 3’rd
pulse is missing. The top subplot also shows reflection of one target
at an ambiguous delay, slightly longer than one PRI. The middle
subplot contains M (= 2) consecutive groups of n (= 3) MMFs,
each group overlaid by bipolar Barker 3 sequences {1 1 −1}, hence
every 3’rd MMF is negated. The bottom subplot displays the resulted,
noise free, periodic cross-correlation. It shows 4 periods of the 3-fold
extended unambiguous delay, each containing the MMF response of
the own transmitted coded pulse and of the single weaker target
return. An increase in M would increase the height of the cross-
correlation response.

Fig. 4 replicates Fig. 3, illustrating a scenario in which the detected
target’s return overlaps with the direct detection of the second pulse.
It illustrates normal operation, provided that the combined signals of
the two do not reach the saturation level (masking) of the receiver.
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Fig. 4. Compressed pulses. The detected point target overlaps the detected
second pulse. No saturation.

The practicality of extending the unambiguous range by large
factors (e.g. n > 5) is questionable. Should such an expansion
be sought, the design rule outlined in (4) and (5) may result in
extensive masking and undesirable SNR loss. An alternative approach
could involve permitting the removal of multiple pulses within
the transmitted periodic sequence Sn , with the stipulation that the
corresponding negative elements in Rn remain constant at −1. Below
is an example for n = 7, which appeared in [12].

S7 = {1110010}, R7 = {111 − 1 − 11 − 1}.

The resulted periodic cross-correlation is perfect with a peak of 4,
which equals the sum of the elements in S7.

III. SUSCEPTIBILITY TO AMPLITUDE FLUCTUATIONS

Radar fluctuating targets, suitable for Doppler processing, generally
belong to Swerling categories 1 or 3 [13]. In these categories
fluctuations occur batch-wise rather than pulse-to-pulse. The noise-
free returns from such targets maintain both amplitude and phase
stability throughout the entire CPI, except for phase changes induced
by Doppler shifts.

While acknowledging this property and considering its relevance
in non-coherent scenarios, this section examines the impact of
inter-pulse random amplitude fluctuations on the performance of the
ON-OFF overlay. Specifically, a simple example will illustrate how
amplitude fluctuations affect the sidelobes, demonstrating that the
extended unambiguous delay remains largely free of sidelobes.

Fig. 5 displays a randomly generated case of the tops of the
p = 18 unipolar Barker 5 pulses, used in our example, after
the ON-OFF overlay removed every 3’rd pulse and after random,
independent, inter-pulse amplitude fluctutions were added. The pulse
amplitudes are now Gaussian distributed with mean of 1 and standard
deviation of 0.03. We will assume that there were no intra-pulse
fluctuations within each one of the unipolar Barker 5 coded pulses.
The compression was performed by the corresponding train of
identical mismatched filters, overlayed by the 3 elements binary code
{1 1 −1}.

Fig. 6 displays a representative cross-correlation pattern, show-
casing the influence of amplitude fluctuations in the detected signal
as illustrated in Fig. 5. A logarithmic scale is employed in Fig. 6 in
order to highlight the exceptionally low levels of sidelobes associated
with tripling the unambiguous delay from Tr to 3Tr . The “sidelobes”

Fig. 5. Unipolar Barker 5 pulses with random inter-pulse amplitude
fluctuations.

Fig. 6. Cross-correlation between the original reference waveform and the
received coded pulse train with added amplitude fluctuations. [dB scale].

manifest as approximately −50d B replicas, separated by Tr , of the
main periodic responses, which themselves are spaced by 3Tr .

IV. DETECTION IN THE PRESENCE OF NOISE

A scene similar to the one in Fig. 3 was used to simulate the nature
of target detection in the presence of noise. Following an envelope
detector, the additive noise is likely to exhibit a Rayleigh probability
density function (PDF). A scale parameter σ = 0.25 was chosen.
Recall that the noise-free target return level was s = 0.3 (Fig. 3, top
subplot). Fig. 7 is a repeat of Fig. 3 with added noise.

The simulation detection algorithm comprised the following steps:
(a) Conduct periodic cross-correlation between the streaming received
signal plus noise (top subplot) and M (= 2) overlaid reference periods
(middle subplot). (b) Accumulate samples of the same delay, from P
(= 4) consecutive periods of the correlation output (bottom subplot).
(c) Compare the sum of the P accumulated samples with a pre-
established (or adaptive) threshold.

Presently, we encounter the classical challenge of determining an
optimal threshold level to minimize the probability of false alarm
(PFA) while maximizing the probability of detection (PD). This
challenge is illustrated in Fig. 8, showcasing the probability density
functions (PDFs) of the output sum (outn) in the noise-only scenario
(plotted in red) and the output sum (outs+n) in the target with added
noise scenario (plotted in black).

A notable characteristic of the noise-only scenario is the expansion
of the PDFs of outn toward exceedingly small negative values. That
happens because the inverted MMF to unipolar Barker 5 exhebits a
negative sum value,

− 6{0.0484, −0.4319, −0.3714, 0.4763, 0.9365, 0.4844,

−1.0576, 0.9365, −0.2947, −0.3552, 0.3552} = −0.7265.
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Fig. 7. Repeat of Fig. 3 with additive Rayleigh distributed noise. Tr = 100,
σ = 0.25, s = 0.3.

Fig. 8. PDFs of outn and outs+n for the case of: n = 3, M = 2, P = 4,
σ = 0.25, s = 0.3.

Consequently, when cross-correlated with positive-only noise sam-
ples, it occasionaly yields a negative output at the sampled delay.
In rare instances, this negative output may surpass the sum of M
(= 2) values at the sampled points in the cross-correlation with the
Mx(n-1) (= 4) non-inverted MMFs (see the negative values in the
bottom subplot of Fig. 7, away from delays around the target or own
pulses). Even more infrequently, the summation of P (= 4) samples
from the same delay across P consecutive periods of the correlation
output may yield a negative value.

The PDFs in Fig. 8 were produced from a Monte Carlo simulation
containing 50000 runs.

V. COHERENT SCENE

Up to this point, the presented method was demonstrated on a
non-coherent system. This constrained the transmitted uniform pulse
train to use intra-pulse ON-OFF coding for pulse compression and
inter-pulse ON-OFF coded overlay to achieve the increase in the
unambiguous range. When these constrained waveforms and overlays
are applied to coherent systems, the resulting correlation output
remains unchanged, unless there is a Doppler shift in the target return.
The impact of Doppler shift can be illustrated through the delay-
Doppler response as determined by the Periodic Cross Ambiguity
Function (PCAF) [14].

Fig. 9. Delay-Doppler response of a coherent train comprising
P = 18 pulses, each phase coded by binary Barker 5. The receiver processing
involves 11-element minISL MMFs. No inter-pulse overlay is applied.

For a more meaningful comparison between the coherent and
non-coherent delay-Doppler response of the method, let’s allow the
coherent transmitted waveform to use phase coding. In this revised
demonstration the following modifications are implemented:

(a) The ON-OFF Barker 5 intra-pulse coding {1 1 1 0 1 } is
substituted with binary Barker 5 {1 1 1 −1 1 }.

(b) The 11 element mismatched filter in the receiver will be
adjusted to the appropriate one for Binary Barker 5,

{−0.2588 − 0.2967 0.0518 0.7046 1.2421 0.7787

− 1.2421 0.7046 − 0.0518 − 0.2967 0.2588}

(c) The 3-element phase-coded sequence {1 1 −0.5 + 0.866 j} will
be overlaid on both the transmitted pulse train and on the sequence of
mismatched filters in the receiver. It’s worth noting that its periodic
autocorrelation is {3 0 0 }.

Finally, it is well-known that the periodicity of a conventional
uniform pulse train is the PRI, Tr . This leads to an unambiguous
Doppler shift equal to 1

/
Tr . However, when an n-element code

is inter-pulse overlaid on the uniform pulse train, the periodicity
increases to nTr, thereby reducing the unambiguous Doppler shift
to 1

/
(nTr ). To confirm this characteristic, the demonstration of the

delay-Doppler response will commence with a PACF of a train of P
uniform pulses, without any overlay.

Other pertinent parameters include: (a) tb represents the element
duration (bit). (b) The x-axis corresponds to the delay τ , normalized
as τ /tb. (c) P denotes the number of pulses in the CPI, consequently
the duration of the CPI is PTr . In the ensuing three illustrations,
P = 18. (d) The y-axis represents the Doppler shift ν, normalized
as ν PTr . By employing these normalizations, both axes become
dimensionless. (e) The number of elements in the overlay is n = 3.
(f) The z-axis represents the response using a logarithmic scale (dB).

Fig. 9 depicts the coherent scenario without overlay. At zero
Doppler, a peak occurs every Tr , namely every τ

/
tb = 100. The

peak’s magnitude is −0.589 dB, reflecting the loss incurred by
utilizing a MMF. The delay’s peak sidelobe is also noticeable at
a level of −25.7 dB. The unambiguous Doppler is evident through
peaks at a normalized Doppler of ν PTr = 18. With P =18, this
implies that the peaks appear at ν = 1

/
Tr , corresponding to the

inverse of the PRI.
Fig. 10 illustrates the coherent scenario with phase-coded overlay.

Thanks to the overlay, at zero Doppler, a peak emerges every 3Tr ,
namely every τ

/
tb = 300. The magnitudes of the peak and of the

highest sidelobe remain unchanged. However, a significant alteration
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Fig. 10. Delay-Doppler response of a coherent train comprising
P = 18 pulse, each phase coded by binary Barker 5. The receiver process-
ing involves 11-element minISL MMFs. Phase-coded inter-pulse overlay is
applied.

Fig. 11. Delay-Doppler response of a coherent train comprising
P = 18 pulse, each ON-OFF coded with unipolar Barker 5. The receiver
processing employs 11-element minISL MMFs. ON-OFF inter-pulse overlay
is applied to the transmitted pulses.

is observed in the spacing between peaks at zero Doppler, which is
now 3Tr . Consequentially, this leads to the emergence of peaks at
ν PTr = 6, signifying a reduction in the unambiguous Doppler shift
to ν = 1

/
(3Tr ).

Fig. 11 depicts a coherent scenario with an ON-OFF coded overlay,
applied to the transmitted pulses {1 1 0 }, and binary overlay
{1 1 −1} applied to the sequence of MMFs in the receiver. The
MMFs are optimized for the unipolar Barker 5 coding of the transmit-
ted pulses. The zero-Doppler peaks reveal a substantial loss (4.75 dB)
attributed to the mismatch between the on-transmit and on-receive
overlays, as well as the comparatively suboptimal performance of
a MMF designed for unipolar Barker 5. This discrepancy is also
accountable for the elevated near sidelobes. However, the 3-fold
extension of the unambiguous range is maintained. Thanks to the
symmetry property of the PCAF, it was enough to plot only its two
positive Doppler quadrants.

Fig. 11 illustrates that the “turn off every n’th pulse” method is
applicable to coherent systems as well, yielding the desired n-fold
expansion of the unambiguous radar range. However, a comparison
between Fig. 11 and Fig. 10 reveals that phase-coded overlays,
exclusive to coherent systems, can achieve this task with lower loss.
A concluding remark on the available phase-coded overlays: Apart
from the previously mentioned 3-element overlay code, there are

suitable codes specifically at prime lengths. The 5 and 7 element
phase-coded sequences are:

{0.309 + 0.9511i, −0.809 + 0.5878i, 1, 1, −0.809 + 0.5878i}

{1, −0.75 + 0.6614i, −0.75 + 0.6614i, 1,

− 0.75 + 0.6614i, 1, 1}.

VI. CONCLUSION

A novel method has been introduced to extend the unambiguous
range of radar systems. This simple approach proves adaptable to
both coherent and non-coherent pulse radar, along with other distance
measuring sensors such as Lidar or sonar. The fundamental concept
revolves around employing periodic inter-pulse ON-OFF coding
overlaid onto the transmitted pulses. Simultaneously, a corresponding
code is overlaid onto the reference sequence in the receiver, with
no restrictions on being limited to ON-OFF values. The noise-free
simulations illustrated a notable n-fold expansion in the unambiguous
radar range, where n took values of 3, 4, or 5. It is worth noting that
alternative sequence families have the potential to yield even greater
expansion factors. Detection in the presence of noise was demon-
strated on the 3-fold case by a simple simulation using an ad-hoc
detection algorithm with one set of parameters. The investigation
extended to the implications of applying the method in coherent
systems, exploring the potential and advantages of incorporating
phase-coded overlays, which are accessible in coherent systems.
Future work should study detection dependence on the parameters
and on noise statistics and delve into a comprehensive comparison of
detection performances, particularly when contrasted with prevailing
methodologies such as staggered PRI.
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