
1

Repeated sorting on sliding window for OS-CFAR

Joseph Haim Didi 1, Nadav Levanon 1*

1 Electrical Engineering - Systems, Tel-Aviv University, Tel-Aviv, Israel
*nadav@eng.tau.ac.il

Abstract: An algorithm is suggested for repeated sorting of a sliding window of n consecutive reference cells, required in
OS-CFAR radar detection. The sliding window surrounds a central Cell Under Test (CUT) with guard cells on its sides, which
are excluded from the sorted reference cells. The algorithm’s computational complexity is smaller by a factor of n/4 compared
to performing a new independent sorting after each slide. That factor does not depend on the number of guard cells. The
advantage of the new algorithm was confirmed by theoretical and numerical comparison with respect to two other recently

reported approaches.

1. Introduction

Radar detection of targets in the presence of noise and

clutter background requires a detection threshold. The

changing level of the background suggests an adjustable

threshold that can be derived, for each range (or Doppler) cell,

from its neighbouring cells. The purpose of the adjustable

threshold is to maintain a predetermined constant false alarm

rate (CFAR). Order Statistics (OS) [1] is a popular CFAR

approach because it tolerates singularities in the background,

e.g., neighbouring targets. What hampers the use of OS

CFAR is the need to numerically sort the values in the

reference cells in order to pick a representative reference cell

(usually near the 75% level) that will be used to determine the

threshold. Censored Cell Averaging (CCA) [2] is a similar

CFAR technique that also requires sorting.

Sorting is a rather computationally complex operation.

There are many well-known sorting algorithms [3,4,5]. Their

computational complexity changes for different initial state

of the window to be sorted. For a random initial state (typical

in detected noise), the average complexity of sorting an n

element window changes between ()2O n (e.g., Bubble sort

[3]) to ()2logO n n (e.g., Merge sort [4] or Quick sort [5]).

If the radar range span contains N range cells (e.g., N

= 1000) and the window of reference cells around the CUT

contains n range cells (e.g., n = 50), then the brute-force

CFAR approach will require approximately N n N− 

repeats of sorting of a sliding window of size n, namely

approximately
2log 280,000N n n  operations.

Our approach makes use of the advantageous fact that

in each move of the sliding window there is only a minor

change in the content of the n reference cells. When using that

advantage the number of required operations will drop by a

factor of 4n . In the above example it will drop to

24 log 22,600N n  operations. We will also show that the

improvement by a factor of ()4 50 4 12.5n = = is not

affected by the number of guard cells around the CUT (that

are not used as reference cells).

In our approach, sorting of the reference window is

performed only once, hence any one of the efficient

()2logO n n sorting algorithms will do. On the other hand,

updating of the sorted reference window is required after each

slide of the window. That update uses an efficient algorithm

to place a new element in its appropriate location in the sorted

reference array. The algorithm employs short representative

arrays and a search algorithm based on the principle of the

“Lion in the desert” search algorithm. That algorithm is

described in the Appendix. The following sections of the

paper will include: A brief description of OS-CFAR; The

process of updating the sorted reference array after each slide,

without and with guard cells; Computation complexity

analysis; Simulation examples. Finally we will describe two

previously published approaches of efficient sorting for OS-

CFAR, estimate their complexity and compare their

performances with ours.

2. OS-CFAR

Order Statistics CFAR [1], as described in Fig. 1,

follows a non-coherent envelope detector. If the background

noise is Rayleigh distributed, the output of a square-law

detector will be exponentially distributed. The upper shift

register contains the intensities measured in consecutive

range cells. Hence, Zi and Zi+1 exhibit the intensities measured

at two neighbouring range cells. The range cell presently

examined against threshold, is the CUT, usually located at the

centre of the window. In some cases there may be one or more

guard cells (G) on each side of the CUT to prevent self-

masking of a target whose width is wider than the width of a

range cell. Excluding the CUT and G cells the window

contains n reference cells. Those n reference cells are sorted

to produce a value ordered reference window (VORW),

where
(1) (2) (3) () ()k nz z z z z    . The k’th ordered

cell is picked as the representative cell. Its value ()kz is then

multiplied by a coefficient  to produce the threshold T,

against which the value in the CUT is compared, to decide if

there is a target at that range cell. If the probability density

function (PDF) of the values in the cells zi , including the CUT,

is identical and exponential, the probability of false alarm will

be given by (1). Note that the scale parameter of the

exponential PDF does not appear in (1), which is what makes

this a CFAR detector.
1

1

1
1

k

FA

i

P
n i


−

=

 
= + 

+ − 
 (1)

ReView by River Valley Technologies IET Radar, Sonar Navigation

2019/04/09 10:09:42 IET Review Copy Only 2

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.

2

Fig. 1. Block diagram of OS-CFAR

 Z1 Z2 CUT Zn Zn+1

Range ➔

 Z(1) Z(2) Z(k-1) Z(k) Z(n)

Value ➔

After one window slide, what happens to the range-ordered cells:
 Z1 Z2 Previous

cut
CUT Zn+1

Range ➔

Fig. 2. The concept of updating the reference window

What determines the
FAP are the size n of the

reference cells window, the selection of the representative

cell k, and the coefficient .

The main advantage of OS-CFAR is its inherent

robustness against the presence of other targets within the

range span of the reference window. When using averaging

instead of sorting, the presence of target(s) among the

reference cells will raise the threshold dramatically, causing

miss detection. Choosing a relatively low value of k will

improve the protection but will increase the Signal to Noise

Ratio (SNR) loss of the CFAR detector, relative to detection

with predetermined threshold. A common compromise is to

choose 0.75k n .

The main disadvantage of OS-CFAR is the need to

obtain a new VORW of reference cells, as the CUT and its

surrounding cells slide along the radar range span. The entire

range span includes N range cells, and typically N n .

Performing N repeated independent sorts creates a large

computing load, which may be prohibitive. The next section

suggests a mitigation of this difficulty - instead of performing

a new complete sort operation after each window slide,

update the previous VORW (Fig. 2).

3. Updating an ordered window after one slide (no
guard cells)

Only for the first CUT we sort the range-ordered

reference window and create a value-ordered reference

window (VORW). Fig. 2 shows what happens after a slide of

the reference window:

(1) The new CUT will be the cell to the right of the previous

CUT.

(2) The previous CUT will join the reference cells.

(3) The first reference cell will exit.

(4) A new cell from the right will join the reference cells.

In order to update the previous VORW we need to

perform four tasks:

(1) Take the value of Z1 out from the VORW.

(2) Take the value of the new CUT out from the VORW.

(3) Add the value in the previous CUT to the VORW.

(4) Add the value in the new cell Zn+1, which entered from

the right, into the VORW.

To execute tasks (1) and (2) we use the “Lion in the

desert” algorithm (see Appendix) to find where the values of

those two cells are located in the VORW and take them out.

The complexity of each search in a window of length n is

2log n . Extracting both will therefore require
22 log n

operations.

The first step in all the iterations involved in adding

values to a VORW is to check if the value of the new element

is smaller or larger than all the values in the VORW, if it is,

placing it in the VORW is straight forward and no search is

needed. If search is needed we propose an efficient approach,

which is a modification to “Lion in the desert”. The difference

is that here we have to insert a new element exactly between

two values, one that is smaller (or equal) to the new element

and one that is larger (or equal) to the new element. If the

length of the VORW was a power of 2, then a “Lion in the

desert”, as is, would perform that task. The modified

algorithm allows other lengths.

We will demonstrate the concept on a VORW of

length n = 50 (see below). Into that VORW we want to insert

a new value Zm at the correct location.

(1) (2) () () () () () () (49) (50)
z z z z z z z z z z

We will split the original 50 element VORW (above)

into 5 sections, each 10 element long, and pick the first

element of each section to create a new 5 element value

ordered window (below).

G CUT G 1z 2z
z = r2

square-law detector

SORT

comparator

)1(z)2(z)(kz

Z(n)

Zn

ReView by River Valley Technologies IET Radar, Sonar Navigation

2019/04/09 10:09:42 IET Review Copy Only 3

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.

3

(1) (11) (21) (31) (41)
z z z z z

This 5 element window is called the representative

window. Each element in it will represent itself and the 9

elements following it. We now define:

()

1

5

2

1

left

right

left right
mid ceil

if mid right mid mid

=

=

+ 
=  

 

 → = −

 (2)

If the last line of (2) is not true, the value of mid does

not change. Initially ()Z mid is the value in the centre of the

representative window, namely ()21Z . Let Zm be the new

value entering the reference window, then

 ()() ()()(1m mif Z Z mid and Z Z mid  + Point A (3)

If (3) is not true we check if

()() ()(1)m mZ Z mid and Z Z mid  + (4)

or if

()() ()(1)m mZ Z mid and Z Z mid  + (5)

If the first option (4) holds then we perform:

()

()() ()()

1

, no change

2

1

(1m m

left mid

right

left right
mid ceil

if mid right mid mid

if Z Z mid and Z Z mid

= +

+ 
=  

 

 → = −

  + Point A

 (6)

If the second option (5) holds then we perform

()() ()()

, nochange

1

2

(1m m

left

right mid

left right
mid ceil

if Z Z mid and Z Z mid

= −

+ 
=  

 

  + Point A

 (7)

Point A. Reaching Point A implies that either (3) or the last

statement in (6) or the last statement in (7) is true. That means

that we found the representative element that the new value

is larger than it, and the representative element that the new

value is smaller than it.

The process above is repeated by creating a new

representative window, and so on, until only two elements are

left. The new element will be smaller than (or equal to) the

larger of the two elements and larger than (or equal to) the

smaller of the two elements. Hence will be placed between

them.

We will introduce a numerical example that will help

follow the concept. Let the initial VORW be all the 50 odd

numbers from 1 to 99 (see below). Into that window we want

to add the value 64, in its proper location.

1 3 5 7 9 99.....

The representative window will be:

1 21 41 61 81

Applying (2) to the example will produce a false statement:

()

()

1

5

1 5
3

2 2

1

3 5

left

right

left right
mid ceil ceil

if mid right mid mid

if mid

=

=

+ +   
= = =   

   

 → = −

  not true no change in

We now check (3) , repeated below as (8)

()() ()()(1m mif Z Z mid and Z Z mid  + (8)

And express it using the numerical example:

If () ()64 41 64 61and  not true

Because it was not true we check (4)

()() ()

() ()

(1)

64 41 64 61

m mZ Z mid and Z Z mid

and

  + 

   true

Hence we will proceed and use (6)

() ()

()() ()()
() ()()

1 3 1 4

5

4 5
5

2 2

1 4 61

(1

64 61 64 81

m m

left mid

right

left right
mid ceil ceil

if mid right mid mid mid Z mid

if Z Z mid and Z Z mid

if and

= + = + =

=

+ +   
= = =   

   

 → = −  =  =

  + 

   true

Once the statement is true, it means that we reached Point A,

namely we found the representative element that the new

value is larger than it and the representative element that the

new value is smaller than it. Using the result from the

example, the two elements were 61 and 81. We now proceed

by taking all the elements located between those two elements

and create a new representative window:

 1 21 41 61 81

 63 65 67 69 71 73 75 77 79 81

63 67 71 75 79



The last row above is the new representative window. We will

repeat the proceeding again until we reach a window

containing only two elements. The new value of 64 will enter

between those remaining two elements.

ReView by River Valley Technologies IET Radar, Sonar Navigation

2019/04/09 10:09:42 IET Review Copy Only 4

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.

4

 1 21 41 61 81

 63 65 67 69 71 73 75 77 79 81

63 67 71 75 79

 63 65

Summary: The initial window of length n = 50 was

split into n1=5 windows each of length 10. Using an

intermediate representative window, out of the five windows

the correct one was found (into which the new element will

be inserted). That correct 10 element window was split to n2

=5 windows each of length n3=2 elements, and the new

element was inserted between those two. Note that

1 2 3n n n n=   . The same three steps will be used for other

initial size windows. Examples from some lengths used in

Section 9 are:80 8 5 2=   , 150 15 5 2=   , 500 50 5 2=   .

4. Calculating the Computational Complexity of
Adding a New Value

(1) The search within the 5 element representative window

(1) (11) (21) (31) (41), , , ,Z Z Z Z Z required
2log 5 operations.

(2) Similarly the search within the 5 element array

(32) (34) (36) (38) (40), , , ,Z Z Z Z Z also required
2log 5 operations.

(3) The search within the last 2 element array required
2log 2

operations.

The total was ()2 2 2 2 2log 5 log 5 log 2 log 5 5 2 log 50+ + =   = .

Selecting representative arrays of sizes 5, 5 and 2,

whose product of lengths, 50, is the length n of the VORW,

leads the total complexity of adding one new value to the

VORW to be
2log n . However, we had to perform two such

insertions: for the CUT that entered the VORW (task 3) and

for the new element that joined in from the right (task 4).

Hence the complexity of entering the two new values was

22log n . Recall that extracting two elements (tasks 1 and 2)

also required
22log n operations, Hence the complexity of

one repeated sorting is
24log n .

That brings the total complexity of N repeats of the

new approach to
24logN n . Recall that the prevailing

approach – performing an independent sort after each

window slide, entailed complexity of
2logN n n . The

conclusion is therefore that the new approach reduces the

complexity by a factor of n/4 . That conclusion says that the

improvement in complexity increases with the length n of the

reference window.

5. Updating an Ordered Window After one slide
(with Guard Cells)

The original window with guard cells ()1 2G ,G is seen

in Fig. 3. Recall that the initial sort did not include

()1 2G ,CUT,G . The updating steps:

(1) The old G1 joins the reference cells.

(2) The old CUT becomes G1.

(3) The old G2 becomes the CUT.

(4) The reference cell on the right of the old G2 becomes G2.

(5) The first reference cell Z1 exits the reference window.

(6) The cell on the right of the reference window, joins the

reference window.

 Z1 Z2 G1 CUT G2 Zn Zn+1

Range ➔

After one window slide, what happens to the range-ordered

cells:
 Z1 Z2 Previous

G1

G1

Previous

CUT

CUT

Previous

G2

G2 Zn+1

Range ➔

Fig. 3. Updating when guard cells are present

Those changes require the following modifications in

the VORW:

(1) Take out the value of Z1 from the VORW.

(2) Add the value of the old G1 to the VORW.

(3) Extract from the VORW the value of the reference cell

that was located to the right of G2.

(4) Add to the VORW the value of the new cell that joined

the reference window from the right.

We see that when guard cells are used we still have to

extract 2 values from the VORW and add 2 values to the

VORW. Exactly what we had to do when guard cells were

not used. The conclusion is that our proposed algorithm is not

affected by the number of guard cells. The computational

complexity of an update, with guards, remains
24log n . Hence

the complexity improvement factor remains n/4 .

6. Demonstration of the Algorithm Operation

In a typical simulation run a vector of N +n (≈1000)

random values from a Rayleigh PDF was generated. From

which the first n (=50) values were used as the initial range-

ordered background samples (Fig. 4).

Three central cells (filled by blue, red and green stars)

represent the l.h.s. guard, the CUT and the r.h.s. guard,

respectively. Their values appear in the figure’s title. Those

cells do not appear in the initial value-ordered sorted window

(Fig. 5). Creating the first VORW was performed by the first

and only sorting operation.

After one window slide the range-ordered window

appears in Fig. 6. From now on only sorting updates are

required, which will result in the new VORW (Fig. 7). The

similarity between Figs. 5 and 7 provides intuitive

justification for performing a sorting update instead of a full

new sort. The two VORWs are very similar and differ in only

4 places, out of 50. The window’s slides, each followed by a

sorting update, will be repeated 1000 times, until the CUT

reaches its furthest range.

In three such simulation runs, with exponentially

distributed background, the computation improvement ratios

were: 12.75, 12.98 and 13.1. In three similar simulation runs,

with Rayleigh distributed background, the computation

improvement ratios were: 12.95, 13.25 and 13.55. These

results agree with the expected worst-case improvement ratio,

which is 4 50 4 12.5n = = .

ReView by River Valley Technologies IET Radar, Sonar Navigation

2019/04/09 10:09:42 IET Review Copy Only 5

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.

5

Fig. 4. Initial range-ordered window

Fig. 5. Initial value ordered reference window (VORW)

7. Other Sorting Algorithms

7.1. Bubble sort [3]
In this comparative sorting, each iteration causes the

largest element in a shrinking array to move toward its final

location. The sorting starts by comparing the value of every

two neighbouring elements in an n size array. If
1i ia a + the

two elements will switch positions. At the end of the iteration

the largest element will move to the last place. Next the

process is repeated on an n-1 long array that does not include

the last element. This is repeated until there are no

consecutive elements that are not in the correct order.

Example: Consider the array [6 5 3 1 8]. 1st iteration – 6 and 5

will be compared and will switch positions. Then 6 and 3 will

be compared and switch positions, and 6 and 1 will switch

positions, while 6 and 8 remain in that order, resulting the

array [5 3 1 6 8]. 2nd iteration – 5 and 3 will switch, 5 and 1

will switch and 5 and 6 will not, resulting [3 1 5 6 8]. 3rd

iteration – 3 and 1 will switch positions, while 3 and 5 will

not, resulting the sorted array [1 3 5 6 8].

Fig. 6. The range-ordered window after one slide

Fig. 7. VORW after one slide, obtained by sorting update

Computational complexity – The 1st iteration on an n–size

array requires n-1 comparisons, the 2nd requires n-2

comparisons, and so on. The n-1 iteration will require only

one comparison. The total number of comparisons is

therefore

() ()21 2 3 ... (1) 1 2n n n O n+ + + + − = − = (9)

Namely, the average computational complexity of Bubble

sort is
2n .

7.2 Merge sort [4]
This is a recursive sorting algorithm utilizing the simplicity

of merging sorted arrays. An unsorted array of size n is

divided into two smaller sub-arrays each of approximate n/2

size. This is repeated until the sub-arrays are of length one,

which is obviously a sorted sub-array. Next we start merging

pairs of sub-arrays. We look at the first element of each one

of the two sub-array to be merged. Since the sub-arrays are

sorted the first element is the smallest element in that sub-

array. The smaller of the two sub-arrays (a and b) will be the

smallest in the merged array.

ReView by River Valley Technologies IET Radar, Sonar Navigation

2019/04/09 10:09:42 IET Review Copy Only 6

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.

6

Assuming that it came from sub-array a, we check the

2nd element in sub-array a and compare it to the first (hence

smallest) of sub-array b. The smaller of the two becomes the

next element in the merged array, and so on. This will

continue until we are done with all the elements of one of the

sub-arrays. Then all the remaining elements of the un-

finished array are entered together, since they are already

sorted. An example of sorting the array [38 27 43 3 9 82 10] is

given in Fig. 8.

.

Fig. 8. Example of Merge Sort

Computational complexity – An n–size array is split into two

sub-arrays of sizes i and n – i– 1. The average

computational time ()T n of sorting the n–size array is given

by

() () ()()

() () () ()()

1
1

0

2

1

0 1 2 1

n

n i

n

T n T i T n i cn

T T T n T n cn

−

=
= + − − +

= + + + − + − +


 (10)

where c is the constant time needed to perform a comparison

between the values of two elements. Re-writing (10) we get

() () () () ()() 22 0 1 2 1nT n T T T n T n cn= + + + − + − + (11)

Similarly, we can write

() () () () ()() ()
2

1 1 2 0 1 2 1n T n T T T n c n− − = + + + − + − (12)

Subtracting (12) from (11) yields

() () () ()

()

1 1 2 1 2

2 1 2

nT n n T n T n cn c

T n cn

− − − = − + −

 − +
 (13)

() ()1 2

1 1

T n T n c

n n n

−
= +

+ +
 (14)

(14) can be developed to a telescoping series,

() () () () ()

() () () () ()

1 2 2 1
....

1 1 3 2

1 2 2 1 0
....

1 3 2 1

2 2 2 2
....

1 3 2

T n T n T n T T

n n n

T n T n T T T

n n

c c c c

n n

− −
+ + + + +

+ −

− −
− − − − − −

−

= + + + +
+

 (15)

Cancelling identical elements yields,

() ()0 1 1 1 1
2

1 1 2 3 1

T n T
c

n n n

 
= + + + + + 

+ + 
 (16)

() () () ()

()

2

2 2

1 0 1 2 log

log log

T n n T n c n

n n O n n

= + + +

 
 (17)

8. Other Repeated Sorting Algorithms for OS-
CFAR with Reduced Computational Complexity

Reducing the complexity of repeated sorting was the

subject of previous works. We will limit the discussion to

independent algorithms rather than approaches in which the

hardware and algorithm are embedded together. We will

discuss two approaches suggested for OS-CFAR.

8.1. K-Finder algorithm [6]
The K-Finder algorithm does not sort the array but

only finds the k’th ordered element in an array of n elements.

The algorithm steps are as follows:

1. Define the desired order k.

2. From the array’s elements choose one as a pivot. Also

define two variables:

Tu – The number of elements in the initial reference window

with value larger than the present pivot.

Cu – The number of elements in the current window that are

larger than the present pivot.

3. Find the number Tu of elements in the initial array that are

larger than the present pivot.

4. Find the number Cu of elements in the present array that

are larger than the present pivot. At the initial step Cu = Tu.

5. If Tu n k − leave in the array only the elements that are

large than the pivot. Also set Tu Tu Cu= − .

If Tu n k − leave in the array only the elements that are

smaller than the pivot.

6. Find the average of the elements remaining in the array and

make that average the new pivot.

7. For the present array calculate Cu (the number of elements

in the present array) that are larger than the pivot. Also set

Tu Tu Cu= + .

8. Repeat steps 3 – 7 until there are no elements whose values

are larger than the value of the pivot, hence 0uC = and the

algorithm stops. The value of the pivot is the value of the k’th

ordered element.

A numerical example is given in Table 1.

ReView by River Valley Technologies IET Radar, Sonar Navigation

2019/04/09 10:09:42 IET Review Copy Only 7

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.

7

Table 1. Example of a K-Finder algorithm for n =10, k = 7 3n k − =

Reference window Pivot Cu Tu comment

5 13 2 11 19 28 6 3 1 9 6 5 5 Tu > n-k
Hence choose values larger than pivot.

13 11 19 28 9 0 Set Tu Tu Cu= −

 13 11 19 28 9 16 2 2 Pivot = mean. Calculate Cu. Tu =2 < n-k elements in

the initial array are larger than the pivot, hence the

smaller than pivot values will remain in the array

13 11 9 11 1 3 3 elements in the initial array are larger than the new

pivot ➔ 3Tu n k=  − ➔ the smaller elements

stay. Only 1 element of the present array is larger

than the pivot ➔ Cu=1.

11 9 10 1 4 4Tu n k=  − ➔ the larger elements stay.

11 11 This is the k’th ordered element

Computational complexity – In the first iteration n

comparisons are conducted to find which element in the array

has a larger value than the defined pivot. In the second

iteration n – k comparisons are required, and so on until the

k’th ordered element is reached. The total complexity ()T n

is therefore

() () () ()1 1 2 ...T n n n k n k k n k k k= + − + − − + − − − + (18)

Because the various k values in each iteration are significantly

smaller than n, (18) implies () ()T n O n .

8.2 ABIS algorithm [7]

The Anchor Based Insertion Sorting (ABIS), does

make use of the fact that the reference window was initially

sorted. In addition to the original array containing the input

samples in their order of arrival, the algorithm creates two

additional arrays: Cell Unit List (CUL) and Ordered

Sequence. The initial Ordered Sequence is created by initial

sorting of the reference window, which includes the first n

input cells, excluding the CUT).

Each of the cells in the CUL contains 4 fields: Its

location index in the CUL, its numerical value, the location

index of the cell that preceded it in the Ordered Sequence and

the index of the cell that followed it in the Ordered Sequence.

After a shift, two elements have to exit the reference

window (the earliest cell and the cell to the right of the CUT).

The various indexes are used to achieve that. Then two new

elements will enter the reference window (the CUT from the

previous shift and the new cell entering from the right). Each

one of the two new elements will be compared to the value of

the recent k’th ordered element. If the tested entering new

element has a higher value it will be compared to each of the

elements whose values are higher than the k’th ordered

element, until it reaches a cell with a higher value. A similar

operation is performed if the new entering cell has a smaller

value then the k’th ordered cell. This sorting approach is

based on the “Insertion sorting algorithm”. In addition, after

each insertion the indexes of the cells with values higher than

the inserted cell need to be updated.

Computational complexity – For the more difficult case in

which the two new inserted cells are near the two edges of the

Ordered sequence the number of required operations is

approximately () ()additions
n k k n O n− + +  .

9. Comparing Algorithms

Here we will numerically compare the computational

complexities of four approaches: (a) Repeated Quick Sorting

without using the previous sort, (b) the ABIS approach, (c)

the K–Finder approach, and (d) the approach proposed in this

paper, labelled New Alg. Note that the estimated complexity

of the four approaches are, respectively (up to a constant): (a)

()2logn n , (b) n , (c) n and (d) ()24log n .

Fig. 9. Computational duration of 1000 shifts and repeated

calculations of the k’th ordered cell

ReView by River Valley Technologies IET Radar, Sonar Navigation

2019/04/09 10:09:42 IET Review Copy Only 8

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.

8

All four approaches were programmed in MATLAB

using only basic instructions. The reference window sizes

changed from n = 20 to 1000. For all window sizes the

number of window slides was 1000. The window shift

occurred after the k’th ordered cell was calculated. The k’th

order was chosen near 0.75 n.

Fig. 9 displays a typical result of the time required to

complete 1000 window shifts. It shows that the different

computational complexities become apparent for large

window size n. The ‘New Alg.’ graph in Fig. 9 shows very

slow dependence on the window length n, pointing its

advantage when large sliding window sizes are used.

10. Conclusions

Order Statistics CFAR gained popularity because of

its relative immunity to the presence of neighbouring targets

among the reference cells. However, the need to repeatedly

sort the window of n reference cells, as it slides along the

range axis, is a severe penalty.

The algorithm proposed in this paper performs sorting

update, which is computationally simpler by a factor of n/4,

compared to a new sort after each slide of the window. The

algorithm was described in details and its computational

complexity was analysed and confirmed by simulations.

Theoretical and numerical comparisons were also performed

for two previously reported approaches. The comparison

confirms the advantage of the presently reported algorithm.

11. References

[1] Rohling, H.: ‘Radar CFAR thresholding in clutter and

multiple target situations’ IEEE Trans. Aerospace and

Electronic Systems, 1983, 19, (4), pp. 608-621

[2] Ritcey, J. A.: ‘Performance analysis of the censored mean-

level detector’ IEEE Trans. Aerospace and Electronic

Systems, 1986, 22, (4), pp. 443-454

[3] Biggar, P. and Gregg, D. ‘Sorting in the presence of

branch prediction and caches’ Technical Report TCD-CS-

2005-57, Dept. Comp. Sci., Univ. of Dublin, Trinity College,

August 2005. (https://www.scss.tcd.ie/publications/tech-

reports/reports.05/TCD-CS-2005-57.pdf)

[4] Knuth, D. E.: ‘The Art of Computer Programing: Vol. 3:

Sorting and Searching’ (Addison-Wesley, 2nd edn. 1998)

[5] Aho, A. V., Hopcroft, J. E. and Ullman, J. D.: ‘The Design

and Analysis of Computer Algorithms’ (Addison-Wesley,

1974)

[6] Ali, Z., Arshad, A., Razzaq, U., Sana, S., Ahmed, A. H.,

Harris, A. M.: ‘Design and implementation of an OS-CFAR

processor based on a new rank order filtering algorithm’

2010 Int’l Symp. On Systems On Chip, Tampere, Finland,

September 2010, pp. 158 – 162.

[7] Shin, D., Kim, J., Kim J., Bang. J., Kwon, K. K.: ‘Anchor

based insertion sorting algorithm for OS-CFAR’ 2014 IEEE

Radar Conference, Cincinnati, OH, USA, September 2014,

pp. 391-395.

12. Appendix – “Lion in the desert” search
algorithm

“Lion in the desert” or “Binary search” is a well-

known search algorithm for finding a numerical value

element in an already sorted window, where the left-most

element contains the lowest numerical value and the

right-most element exhibits the highest value. If the element

in the middle of the window contains the value we look for,

the search ends successfully right there. (If the number of

elements is even we can arbitrarily define the mid-element as

the one on the right of the middle.) If the mid-element is not

the one we look for, we compare the sought-for value to the

value of the mid-element. If the sought-for value is smaller

than the mid-element value, we limit the search to the l.h.s. of

the mid-element, where all the elements exhibit smaller

values, and vice-versa. That process continues repeatedly as

long as the sought-for value is not equal to the value of the

mid-element. In the worst case the array size shrinks to 1 or 2

elements.

Example:

Consider the sorted window in the top row of Fig. 10.

We are looking for the number 82. The first step is to choose

the middle cell. Its value is 52. Since 82>52, the search will

continue in the sub-window to the right of the mid element,

where all the values are higher than (or equal to) 52.

The middle cell of the sub-window (middle row) is

94 > 82, so the search will now be limited to its left sub-

window, repeated in the last row, where the mid-element (as

defined for even length arrays) exhibits the value we look for.

10 18 27 35 43 60 82 94 97 100

60 82 97 100

60

52

94

82

Fig. 10. Example of a “Lion in the desert” search

Computation complexity: In each step there is one

comparison and the array size is halved. The worst case is

when the array reaches a size of one element. In that case the

number of comparisons m satisfies the equation 2m n= . In the

worst case
2logm n= . The complexity is therefore ()2logO n .

ReView by River Valley Technologies IET Radar, Sonar Navigation

2019/04/09 10:09:42 IET Review Copy Only 9

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.

