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Abstract: An algorithm is suggested for repeated sorting of a sliding window of n consecutive reference cells, required in 
OS-CFAR radar detection. The sliding window surrounds a central Cell Under Test (CUT) with guard cells on its sides, which 
are excluded from the sorted reference cells. The algorithm’s computational complexity is smaller by a factor of n/4 compared 
to performing a new independent sorting after each slide. That factor does not depend on the number of guard cells. The 
advantage of the new algorithm was confirmed by theoretical and numerical comparison with respect to two other recently 

reported approaches. 
 

1. Introduction 

Radar detection of targets in the presence of noise and 

clutter background requires a detection threshold. The 

changing level of the background suggests an adjustable 

threshold that can be derived, for each range (or Doppler) cell, 

from its neighbouring cells. The purpose of the adjustable 

threshold is to maintain a predetermined constant false alarm 

rate (CFAR). Order Statistics (OS) [1] is a popular CFAR 

approach because it tolerates singularities in the background, 

e.g., neighbouring targets. What hampers the use of OS 

CFAR is the need to numerically sort the values in the 

reference cells in order to pick a representative reference cell 

(usually near the 75% level) that will be used to determine the 

threshold. Censored Cell Averaging (CCA) [2] is a similar 

CFAR technique that also requires sorting.  

Sorting is a rather computationally complex operation. 

There are many well-known sorting algorithms [3,4,5]. Their 

computational complexity changes for different initial state 

of the window to be sorted. For a random initial state (typical 

in detected noise), the average complexity of sorting an n 

element window changes between ( )2O n  (e.g., Bubble sort 

[3]) to ( )2logO n n (e.g., Merge sort [4] or Quick sort [5]). 

If the radar range span contains N range cells (e.g., N 

= 1000) and the window of reference cells around the CUT 

contains n range cells (e.g., n = 50), then the brute-force 

CFAR approach will require approximately N n N−   

repeats of sorting of a sliding window of size n, namely 

approximately 
2log 280,000N n n   operations.   

Our approach makes use of the advantageous fact that 

in each move of the sliding window there is only a minor 

change in the content of the n reference cells. When using that 

advantage the number of required operations will drop by a 

factor of 4n . In the above example it will drop to 

24 log 22,600N n  operations. We will also show that the 

improvement by a factor of ( )4 50 4 12.5n = =  is not 

affected by the number of guard cells around the CUT (that 

are not used as reference cells). 

In our approach, sorting of the reference window is 

performed only once, hence any one of the efficient 

( )2logO n n sorting algorithms will do. On the other hand, 

updating of the sorted reference window is required after each 

slide of the window. That update uses an efficient algorithm 

to place a new element in its appropriate location in the sorted 

reference array. The algorithm employs short representative 

arrays and a search algorithm based on the principle of the 

“Lion in the desert” search algorithm. That algorithm is 

described in the Appendix. The following sections of the 

paper will include: A brief description of OS-CFAR; The 

process of updating the sorted reference array after each slide, 

without and with guard cells; Computation complexity 

analysis; Simulation examples. Finally we will describe two 

previously published approaches of efficient sorting for OS-

CFAR, estimate their complexity and compare their 

performances with ours. 

2. OS-CFAR 

Order Statistics CFAR [1], as described in Fig. 1, 

follows a non-coherent envelope detector. If the background 

noise is Rayleigh distributed, the output of a square-law 

detector will be exponentially distributed. The upper shift 

register contains the intensities measured in consecutive 

range cells. Hence, Zi and Zi+1 exhibit the intensities measured 

at two neighbouring range cells. The range cell presently 

examined against threshold, is the CUT, usually located at the 

centre of the window. In some cases there may be one or more 

guard cells (G) on each side of the CUT to prevent self-

masking of a target whose width is wider than the width of a 

range cell. Excluding the CUT and G cells the window 

contains n reference cells. Those n reference cells are sorted 

to produce a value ordered reference window (VORW), 

where 
(1) (2) (3) ( ) ( )k nz z z z z     . The k’th ordered 

cell is picked as the representative cell. Its value ( )kz  is then 

multiplied by a coefficient  to produce the threshold T, 

against which the value in the CUT is compared, to decide if 

there is a target at that range cell. If the probability density 

function (PDF) of the values in the cells zi , including the CUT, 

is identical and exponential, the probability of false alarm will 

be given by (1). Note that the scale parameter of the 

exponential PDF does not appear in (1), which is what makes 

this a CFAR detector. 
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Fig. 1.  Block diagram of OS-CFAR 

 

 Z1 Z2   CUT    Zn Zn+1  

Range ➔ 

 

 Z(1) Z(2)    Z(k-1) Z(k)  Z(n)   

Value ➔ 

 
After one window slide, what happens to the range-ordered cells: 
 Z1 Z2   Previous 

cut 
CUT    Zn+1  

Range ➔ 
 

Fig. 2.  The concept of updating the reference window 

 

What determines the 
FAP  are the size n of the 

reference cells window, the selection of the representative 

cell k, and the coefficient . 

The main advantage of OS-CFAR is its inherent 

robustness against the presence of other targets within the 

range span of the reference window. When using averaging 

instead of sorting, the presence of target(s) among the 

reference cells will raise the threshold dramatically, causing 

miss detection. Choosing a relatively low value of k will 

improve the protection but will increase the Signal to Noise 

Ratio (SNR) loss of the CFAR detector, relative to detection 

with predetermined threshold. A common compromise is to 

choose 0.75k n . 

The main disadvantage of OS-CFAR is the need to 

obtain a new VORW of reference cells, as the CUT and its 

surrounding cells slide along the radar range span. The entire 

range span includes N range cells, and typically N n . 

Performing N repeated independent sorts creates a large 

computing load, which may be prohibitive. The next section 

suggests a mitigation of this difficulty - instead of performing 

a new complete sort operation after each window slide, 

update the previous VORW (Fig. 2).  

3. Updating an ordered window after one slide (no 
guard cells) 

Only for the first CUT we sort the range-ordered 

reference window and create a value-ordered reference 

window (VORW). Fig. 2 shows what happens after a slide of 

the reference window: 

(1) The new CUT will be the cell to the right of the previous 

CUT. 

(2) The previous CUT will join the reference cells. 

(3) The first reference cell will exit. 

(4) A new cell from the right will join the reference cells. 

In order to update the previous VORW we need to 

perform four tasks: 

(1) Take the value of Z1 out from the VORW. 

(2) Take the value of the new CUT out from the VORW. 

(3) Add the value in the previous CUT to the VORW. 

(4) Add the value in the new cell Zn+1, which entered from 

the right, into the VORW. 

To execute tasks (1) and (2) we use the “Lion in the 

desert” algorithm (see Appendix) to find where the values of 

those two cells are located in the VORW and take them out. 

The complexity of each search in a window of length n is 

2log n . Extracting both will therefore require 
22 log n  

operations. 

The first step in all the iterations involved in adding 

values to a VORW is to check if the value of the new element 

is smaller or larger than all the values in the VORW, if it is, 

placing it in the VORW is straight forward and no search is 

needed. If search is needed we propose an efficient approach, 

which is a modification to “Lion in the desert”. The difference 

is that here we have to insert a new element exactly between 

two values, one that is smaller (or equal) to the new element 

and one that is larger (or equal) to the new element. If the 

length of the VORW was a power of 2, then a “Lion in the 

desert”, as is, would perform that task. The modified 

algorithm allows other lengths. 

We will demonstrate the concept on a VORW of 

length n = 50 (see below). Into that VORW we want to insert 

a new value Zm at the correct location.  

(1) (2) ( ) ( ) ( ) ( ) ( ) ( ) (49) (50)
z z z z z z z z z z   

We will split the original 50 element VORW (above) 

into 5 sections, each 10 element long, and pick the first 

element of each section to create a new 5 element value 

ordered window (below). 

G CUT G 1z 2z
z = r2

 

square-law detector 

SORT 

comparator 

)1(z )2(z )(kz

  

Z(n) 

Zn 
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(1) (11) (21) (31) (41)
z z z z z  

  

This 5 element window is called the representative 

window. Each element in it will represent itself and the 9 

elements following it. We now define: 

( )

1

5

2

1

left

right

left right
mid ceil

if mid right mid mid

=

=

+ 
=  

 

 → = −

        (2) 

If the last line of (2) is not true, the value of mid does 

not change. Initially ( )Z mid  is the value in the centre of the 

representative window, namely ( )21Z . Let Zm be the new 

value entering the reference window, then 

 ( )( ) ( )( )( 1m mif Z Z mid and Z Z mid  + Point A   (3) 

If (3) is not true we check if 

( )( ) ( )( 1)m mZ Z mid and Z Z mid  +   (4) 

or if  

( )( ) ( )( 1)m mZ Z mid and Z Z mid  +     (5) 

If the first option (4) holds then we perform: 

 

( )

( )( ) ( )( )

1

, no change

2

1

( 1m m

left mid

right

left right
mid ceil

if mid right mid mid

if Z Z mid and Z Z mid

= +

+ 
=  

 

 → = −

  + Point A

   (6) 

If the second option (5) holds then we perform 

 

( )( ) ( )( )

, nochange

1

2

( 1m m

left

right mid

left right
mid ceil

if Z Z mid and Z Z mid

= −

+ 
=  

 

  + Point A

 (7) 

Point A. Reaching Point A implies that either (3) or the last 

statement in (6) or the last statement in (7) is true. That means 

that we found the representative element that the new value 

is larger than it, and the representative element that the new 

value is smaller than it.  

The process above is repeated by creating a new 

representative window, and so on, until only two elements are 

left. The new element will be smaller than (or equal to) the 

larger of the two elements and larger than (or equal to)  the 

smaller of the two elements. Hence will be placed between 

them. 

We will introduce a numerical example that will help 

follow the concept. Let the initial VORW be all the 50 odd 

numbers from 1 to 99 (see below). Into that window we want 

to add the value 64, in its proper location. 

1 3 5 7 9    99.....  

The representative window will be: 

1 21 41 61 81  

Applying (2) to the example will produce a false statement:  

( )

( )

1

5

1 5
3

2 2

1

3 5

left

right

left right
mid ceil ceil

if mid right mid mid

if mid

=

=

+ +   
= = =   

   

 → = −

  not true no change in 

          

We now check (3) , repeated below as (8) 

( )( ) ( )( )( 1m mif Z Z mid and Z Z mid  +  (8) 

And express it using the numerical example: 

If ( ) ( )64 41 64 61and  not true  

Because it was not true we check (4) 

( )( ) ( )

( ) ( )

( 1)

64 41 64 61

m mZ Z mid and Z Z mid

and

  + 

   true
 

Hence we will proceed and use (6) 

( ) ( )

( )( ) ( )( )
( ) ( )( )

1 3 1 4

5

4 5
5

2 2

1 4 61

( 1

64 61 64 81

m m

left mid

right

left right
mid ceil ceil

if mid right mid mid mid Z mid

if Z Z mid and Z Z mid

if and

= + = + =

=

+ +   
= = =   

   

 → = −  =  =

  + 

   true

Once the statement is true, it means that we reached Point A, 

namely we found the representative element that the new 

value is larger than it and the representative element that the 

new value is smaller than it. Using the result from the 

example, the two elements were 61 and 81. We now proceed 

by taking all the elements located between those two elements 

and create a new representative window:  

 

 1 21 41 61 81

 63 65 67 69  71 73 75 77 79 81

63 67 71 75 79


 

 

The last row above is the new representative window. We will 

repeat the proceeding again until we reach a window 

containing only two elements. The new value of 64 will enter 

between those remaining two elements. 
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 1 21 41 61 81

 63 65 67 69  71 73 75 77 79 81

63 67 71 75 79

 63 65

 

Summary: The initial window of length n = 50 was 

split into n1=5 windows each of length 10. Using an 

intermediate representative window, out of the five windows 

the correct one was found (into which the new element will 

be inserted). That correct 10 element window was split to n2 

=5 windows each of length n3=2 elements, and the new 

element was inserted between those two. Note that 

1 2 3n n n n=   . The same three steps will be used for other 

initial size windows. Examples from some lengths used in 

Section 9 are:80 8 5 2=   , 150 15 5 2=   ,  500 50 5 2=   . 

4. Calculating the Computational Complexity of 
Adding a New Value 

(1) The search within the 5 element representative window 

(1) (11) (21) (31) (41), , , ,Z Z Z Z Z required 
2log 5  operations. 

(2) Similarly the search within the 5 element array 

(32) (34) (36) (38) (40), , , ,Z Z Z Z Z also required 
2log 5  operations. 

(3) The search within the last 2 element array required 
2log 2  

operations.  

The total was ( )2 2 2 2 2log 5 log 5 log 2 log 5 5 2 log 50+ + =   = .  

Selecting representative arrays of sizes 5, 5 and 2, 

whose product of lengths, 50, is the length n of the VORW, 

leads the total complexity of adding one new value to the 

VORW to be
2log n . However, we had to perform two such 

insertions: for the CUT that entered the VORW (task 3) and 

for the new element that joined in from the right (task 4). 

Hence the complexity of entering the two new values was 

22log n . Recall that extracting two elements (tasks 1 and 2) 

also required 
22log n  operations, Hence the complexity of 

one repeated sorting is
24log n  .  

That brings the total complexity of N repeats of the 

new approach to
24logN n . Recall that the prevailing 

approach – performing an independent sort after each 

window slide, entailed complexity of 
2logN n n . The 

conclusion is therefore that the new approach reduces the 

complexity by a factor of  n/4 . That conclusion says that the 

improvement in complexity increases with the length n of the 

reference window.  

5. Updating an Ordered Window After one slide 
(with Guard Cells)  

The original window with guard cells ( )1 2G ,G   is seen 

in Fig. 3. Recall that the initial sort did not include

( )1 2G ,CUT,G . The updating steps: 

(1) The old G1 joins the reference cells. 

(2) The old CUT becomes G1. 

(3) The old G2 becomes the CUT. 

(4) The reference cell on the right of the old G2 becomes G2. 

(5) The first reference cell Z1 exits the reference window. 

(6) The cell on the right of the reference window, joins the 

reference window. 

 

 Z1 Z2  G1 CUT G2   Zn Zn+1  

Range ➔ 

After one window slide, what happens to the range-ordered 

cells: 
 Z1 Z2  Previous 

G1 

G1  

Previous 

CUT 

CUT 

Previous 

G2 

G2   Zn+1  

Range ➔ 

Fig. 3.  Updating when guard cells are present 

 

Those changes require the following modifications in 

the VORW: 

(1) Take out the value of Z1 from the VORW.  

(2)  Add the value of the old G1 to the VORW. 

(3) Extract from the VORW the value of the reference cell 

that was located to the right of G2. 

(4) Add to the VORW the value of the new cell that joined 

the reference window from the right. 

We see that when guard cells are used we still have to 

extract 2 values from the VORW and add 2 values to the 

VORW. Exactly what we had to do when guard cells were 

not used. The conclusion is that our proposed algorithm is not 

affected by the number of guard cells. The computational 

complexity of an update, with guards, remains
24log n . Hence 

the complexity improvement factor remains n/4 .  

6. Demonstration of the Algorithm Operation 

In a typical simulation run a vector of N +n (≈1000) 

random values from a Rayleigh PDF was generated. From 

which the first n (=50) values were used as the initial range-

ordered background samples (Fig. 4). 

Three central cells (filled by blue, red and green stars) 

represent the l.h.s. guard, the CUT and the r.h.s. guard, 

respectively. Their values appear in the figure’s title. Those 

cells do not appear in the initial value-ordered sorted window 

(Fig. 5). Creating the first VORW was performed by the first 

and only sorting operation. 

After one window slide the range-ordered window 

appears in Fig. 6. From now on only sorting updates are 

required, which will result in the new VORW (Fig. 7). The 

similarity between Figs. 5 and 7 provides intuitive 

justification for performing a sorting update instead of a full 

new sort. The two VORWs are very similar and differ in only 

4 places, out of 50. The window’s slides, each followed by a 

sorting update, will be repeated 1000 times, until the CUT 

reaches its furthest range. 

In three such simulation runs, with exponentially 

distributed background, the computation improvement ratios 

were: 12.75, 12.98 and 13.1.  In three similar simulation runs, 

with Rayleigh distributed background, the computation 

improvement ratios were: 12.95, 13.25 and 13.55. These 

results agree with the expected worst-case improvement ratio, 

which is 4 50 4 12.5n = = . 
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Fig. 4. Initial range-ordered window 

 

Fig. 5. Initial value ordered reference window (VORW) 

 

7. Other Sorting Algorithms 

7.1. Bubble sort [3] 
In this comparative sorting, each iteration causes the 

largest element in a shrinking array to move toward its final 

location. The sorting starts by comparing the value of every 

two neighbouring elements in an n size array. If 
1i ia a +  the 

two elements will switch positions. At the end of the iteration 

the largest element will move to the last place. Next the 

process is repeated on an n-1 long array that does not include 

the last element. This is repeated until there are no 

consecutive elements that are not in the correct order. 

Example: Consider the array [6 5 3 1 8]. 1st iteration – 6 and 5 

will be compared and will switch positions. Then 6 and 3 will 

be compared and switch positions, and 6 and 1 will switch 

positions, while 6 and 8 remain in that order, resulting the 

array [5 3 1 6 8]. 2nd iteration – 5 and 3 will switch, 5 and 1 

will switch and 5 and 6 will not, resulting [3 1 5 6 8]. 3rd 

iteration – 3 and 1 will switch positions, while 3 and 5 will 

not, resulting the sorted array [1 3 5 6 8]. 

 

 

 

Fig. 6. The range-ordered window after one slide 

 

Fig. 7. VORW after one slide, obtained by sorting update 

 

Computational complexity – The 1st iteration on an n–size 

array requires n-1 comparisons, the 2nd requires n-2 

comparisons, and so on. The n-1 iteration will require only 

one comparison. The total number of comparisons is 

therefore 

( ) ( )21 2 3 ... ( 1) 1 2n n n O n+ + + + − = − =    (9) 

Namely, the average computational complexity of Bubble 

sort is 
2n  .  

 

7.2 Merge sort [4] 
This is a recursive sorting algorithm utilizing the simplicity 

of merging sorted arrays. An unsorted array of size n is 

divided into two smaller sub-arrays each of approximate n/2 

size. This is repeated until the sub-arrays are of length one, 

which is obviously a sorted sub-array. Next we start merging 

pairs of sub-arrays. We look at the first element of each one 

of the two sub-array to be merged. Since the sub-arrays are 

sorted the first element is the smallest element in that sub-

array. The smaller of the two sub-arrays (a and b) will be the 

smallest in the merged array. 
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Assuming that it came from sub-array a, we check the 

2nd element in sub-array a and compare it to the first (hence 

smallest) of sub-array b. The smaller of the two becomes the 

next element in the merged array, and so on. This will 

continue until we are done with all the elements of one of the 

sub-arrays. Then all the remaining elements of the un-

finished array are entered together, since they are already 

sorted. An example of sorting the array [38 27 43 3 9 82 10] is 

given in Fig. 8. 

. 

Fig. 8. Example of Merge Sort 

Computational complexity – An n–size array is split into two 

sub-arrays of sizes i and n – i– 1. The average 

computational time ( )T n   of sorting the n–size array is given 

by 

( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

1
1

0

2

1

0 1 .... 2 1

n

n i

n

T n T i T n i cn

T T T n T n cn

−

=
= + − − +

= + + + − + − +


   (10) 

where c is the constant time needed to perform a comparison 

between the values of two elements. Re-writing (10) we get 

( ) ( ) ( ) ( ) ( )( ) 22 0 1 .... 2 1nT n T T T n T n cn= + + + − + − +    (11) 

Similarly, we can write 

( ) ( ) ( ) ( ) ( )( ) ( )
2

1 1 2 0 1 .... 2 1n T n T T T n c n− − = + + + − + −       (12) 

Subtracting (12) from (11) yields 

( ) ( ) ( ) ( )

( )

1 1 2 1 2

2 1 2

nT n n T n T n cn c

T n cn

− − − = − + −

 − +
     (13) 

( ) ( )1 2

1 1

T n T n c

n n n

−
= +

+ +
                           (14) 

(14) can be developed to a telescoping series, 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 2 2 1
....

1 1 3 2

1 2 2 1 0
....

1 3 2 1

2 2 2 2
....

1 3 2

T n T n T n T T

n n n

T n T n T T T

n n

c c c c

n n

− −
+ + + + +

+ −

− −
− − − − − −

−

= + + + +
+

  (15) 

Cancelling identical elements yields, 

( ) ( )0 1 1 1 1
2 ....

1 1 2 3 1

T n T
c

n n n

 
= + + + + + 

+ + 
    (16) 

( ) ( ) ( ) ( )

( )

2

2 2

1 0 1 2 log

log log

T n n T n c n

n n O n n

= + + +

 
   (17) 

8. Other Repeated Sorting Algorithms for OS-
CFAR with Reduced Computational Complexity 

Reducing the complexity of repeated sorting was the 

subject of previous works. We will limit the discussion to 

independent algorithms rather than approaches in which the 

hardware and algorithm are embedded together. We will 

discuss two approaches suggested for OS-CFAR. 

 

8.1. K-Finder algorithm [6] 
The K-Finder algorithm does not sort the array but 

only finds the k’th ordered element in an array of n elements. 

The algorithm steps are as follows: 

1. Define the desired order k. 

2. From the array’s elements choose one as a pivot. Also 

define two variables: 

Tu – The number of elements in the initial reference window 

with value larger than the present pivot. 

Cu – The number of elements in the current window that are 

larger than the present pivot. 

3. Find the number Tu of elements in the initial array that are 

larger than the present pivot. 

4. Find the number Cu of elements in the present array that 

are larger than the present pivot. At the initial step Cu = Tu. 

5. If Tu n k −  leave in the array only the elements that are 

large than the pivot. Also set Tu Tu Cu= − . 

If Tu n k −  leave in the array only the elements that are 

smaller than the pivot.  

6. Find the average of the elements remaining in the array and 

make that average the new pivot. 

7. For the present array calculate Cu (the number of elements 

in the present array) that are larger than the pivot. Also set 

Tu Tu Cu= + . 

8. Repeat steps 3 – 7 until there are no elements whose values 

are larger than the value of the pivot, hence 0uC = and the 

algorithm stops. The value of the pivot is the value of the k’th 

ordered element. 

A numerical example is given in Table 1. 
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Table 1. Example of a K-Finder algorithm for n =10, k = 7  3n k − =  

Reference window Pivot Cu Tu comment 

5   13   2   11   19   28   6   3   1   9 6 5 5 Tu > n-k  
Hence choose values larger than pivot. 

13   11    19    28   9   0 Set Tu Tu Cu= −   

 13   11    19    28   9 16 2 2 Pivot = mean. Calculate Cu. Tu =2 < n-k elements in 

the initial array are larger than the pivot, hence the 

smaller than pivot values will remain in the array 

13   11   9 11 1 3  3 elements in the initial array are larger than the new 

pivot ➔ 3Tu n k=  − ➔ the smaller elements 

stay. Only 1 element of the present array is larger 

than the pivot ➔ Cu=1. 

11   9  10 1 4 4Tu n k=  − ➔ the larger elements stay. 

11   11   This is the k’th ordered element 

 

 

Computational complexity – In the first iteration n 

comparisons are conducted to find which element in the array 

has a larger value than the defined pivot. In the second 

iteration n – k comparisons are required, and so on until the 

k’th ordered element is reached. The total complexity ( )T n

is therefore 

( ) ( ) ( ) ( )1 1 2 ...T n n n k n k k n k k k= + − + − − + − − − +    (18) 

Because the various k values in each iteration are significantly 

smaller than n, (18) implies ( ) ( )T n O n . 

 
8.2 ABIS algorithm [7] 

The Anchor Based Insertion Sorting (ABIS), does 

make use of the fact that the reference window was initially 

sorted. In addition to the original array containing the input 

samples in their order of arrival, the algorithm creates two 

additional arrays: Cell Unit List (CUL) and Ordered 

Sequence. The initial Ordered Sequence is created by initial 

sorting of the reference window, which includes the first n 

input cells, excluding the CUT).  

Each of the cells in the CUL contains 4 fields: Its 

location index in the CUL, its numerical value, the location 

index of the cell that preceded it in the Ordered Sequence and 

the index of the cell that followed it in the Ordered Sequence.  

After a shift, two elements have to exit the reference 

window (the earliest cell and the cell to the right of the CUT). 

The various indexes are used to achieve that. Then two new 

elements will enter the reference window (the CUT from the 

previous shift and the new cell entering from the right). Each 

one of the two new elements will be compared to the value of 

the recent k’th ordered element. If the tested entering new 

element has a higher value it will be compared to each of the 

elements whose values are higher than the k’th ordered 

element, until it reaches a cell with a higher value. A similar 

operation is performed if the new entering cell has a smaller 

value then the k’th ordered cell. This sorting approach is 

based on the “Insertion sorting algorithm”. In addition, after 

each insertion the indexes of the cells with values higher than 

the inserted cell need to be updated. 

Computational complexity – For the more difficult case in 

which the two new inserted cells are near the two edges of the 

Ordered sequence the number of required operations is 

approximately ( ) ( )additions
n k k n O n− + +  . 

9. Comparing Algorithms  

Here we will numerically compare the computational 

complexities of four approaches: (a) Repeated Quick Sorting 

without using the previous sort, (b) the ABIS approach, (c) 

the K–Finder approach, and (d) the approach proposed in this 

paper, labelled New Alg. Note that the estimated complexity 

of the four approaches are, respectively (up to a constant): (a) 

( )2logn n , (b) n ,  (c) n  and  (d) ( )24log n . 

 
Fig. 9. Computational duration of 1000 shifts and repeated 

calculations of the k’th ordered cell 
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All four approaches were programmed in MATLAB 

using only basic instructions. The reference window sizes 

changed from  n = 20 to 1000.  For all window sizes the 

number of window slides was 1000. The window shift 

occurred after the k’th ordered cell was calculated. The k’th 

order was chosen near 0.75 n. 

Fig. 9 displays a typical result of the time required to 

complete 1000 window shifts. It shows that the different 

computational complexities become apparent for large 

window size n. The ‘New Alg.’ graph in Fig. 9 shows very 

slow dependence on the window length n, pointing its 

advantage when large sliding window sizes are used. 

10. Conclusions 

Order Statistics CFAR gained popularity because of 

its relative immunity to the presence of neighbouring targets 

among the reference cells. However, the need to repeatedly 

sort the window of n reference cells, as it slides along the 

range axis, is a severe penalty.  

The algorithm proposed in this paper performs sorting 

update, which is computationally simpler by a factor of n/4, 

compared to a new sort after each slide of the window. The 

algorithm was described in details and its computational 

complexity was analysed and confirmed by simulations. 

Theoretical and numerical comparisons were also performed 

for two previously reported approaches. The comparison 

confirms the advantage of the presently reported algorithm. 
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12. Appendix  – “Lion in the desert” search 
algorithm 

“Lion in the desert” or “Binary search” is a well-

known search algorithm for finding a numerical value 

element in an already sorted window, where the left-most 

element contains the lowest numerical value and the 

right-most element exhibits the highest value. If the element 

in the middle of the window contains the value we look for, 

the search ends successfully right there. (If the number of 

elements is even we can arbitrarily define the mid-element as 

the one on the right of the middle.)  If the mid-element is not 

the one we look for, we compare the sought-for value to the 

value of the mid-element. If the sought-for value is smaller 

than the mid-element value, we limit the search to the l.h.s. of 

the mid-element, where all the elements exhibit smaller 

values, and vice-versa. That process continues repeatedly as 

long as the sought-for value is not equal to the value of the 

mid-element. In the worst case the array size shrinks to 1 or 2 

elements. 

 

Example:  

Consider the sorted window in the top row of Fig. 10. 

We are looking for the number 82. The first step is to choose 

the middle cell. Its value is 52. Since 82>52, the search will 

continue in the sub-window to the right of the mid element, 

where all the values are higher than (or equal to) 52.  

The middle cell of the sub-window (middle row) is 

94 > 82, so the search will now be limited to its left sub-

window, repeated in the last row, where the mid-element (as 

defined for even length arrays) exhibits the value we look for. 

  

10 18 27 35 43 60 82 94 97 100

60 82 97 100

60

52

94

82

 

 

Fig. 10. Example of a “Lion in the desert” search 

 

Computation complexity: In each step there is one 

comparison and the array size is halved. The worst case is 

when the array reaches a size of one element. In that case the 

number of comparisons m satisfies the equation 2m n= . In the 

worst case 
2logm n= . The complexity is therefore ( )2logO n . 
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