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Noncoherent Pulse Compression

Pulse compression can be performed in noncoherent radars

by using coded on-off keying (OOK). We show how any bipolar

pulse-compression code (e.g., Barker) can be modified into

unipolar OOK through Manchester coding. The resulted

transmitted signal is a burst of dense subpulses, with pulse

position modulation. In the receiver, the envelop-detected

signal is aperiodically cross-correlated with a mismatched

bipolar reference signal, yielding noncoherent integration with a

low-sidelobe response. The concept can be used in simple radars

where Doppler information is not required, in direct-detection

laser radars and in ultrawideband (UWB) radars. Examples are

given with bursts of 13 and 70 subpulses. Detection probabilities

dependence on SNR is studied and compared with coherent

processing.

I. INTRODUCTION

Coherency provides radar with two major
properties: 1) Doppler (range-rate) information on the
target, and 2) pulse-compression capability, in which
the energy in a modulated, long, low-power pulse,
could be integrated through matched filtering, into a
virtual short pulse of high power. Over the years a
rich library of pulse-compression waveforms has been
developed [1, 2]. They are mostly constructed from
FM (linear and nonlinear) and phase-coding (bipolar
and polyphase).
The suggested noncoherent approach is to break

the intended duration of the uncompressed pulse
into a burst of dense, noncontiguous subpulses, and
use pulse position modulation to implement binary
pulse-compression code. The technique can be used in
simple radars that do not need Doppler information.
It may also be attractive for simple direct-detection
laser radars. Indeed, there were already attempts to
perform noncoherent integration of a train of optical
pulses [3]. The approach there was to dither the pulse
position around its nominal value, according to a
pseudonoise (PN) code. The signal intensity at the
detector was cross-correlated with the known outgoing
pulse train. Such cross-correlation between two trains
of unipolar pulses yielded many peaks. Due to the
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dither, one peak was higher than the rest, representing
the true delay. However, the other cross-correlation
peaks can cause an erroneous decision, hence an
error in the estimated delay. The false peaks of the
cross-correlation output play the same role as the
sidelobes in the delay response of a conventional
coherent radar. We propose here to adapt well-known
bipolar pulse-compression waveforms, which yield
aperiodic autocorrelation with low sidelobes, to an
on-off keying (OOK) type of radar, like laser radar, in
order to produce better cross-correlation. The resulted
transmitted signal and an appropriate reference signal
for cross-correlation processing are described in
Section II. The cross-correlation outputs, with and
without noise, are demonstrated in Section III, and
an example of a longer signal is given in Section IV.
An extension to periodic signals is given in Section V.
Detection probabilities are obtained in simulations
described in the appendix, including comparison with
coherent processing.
As far as we know the approach used in [3] is a

first description of what is practically a noncoherent
pulse compression. Skolnik [4, sect. 11.5] states that
“Pulse compression is accomplished by employing
frequency or phase modulation to widen the signal
bandwidth. (Amplitude modulation is also possible,
but is seldom used.)” Only if the sentence in
parentheses would have said “Amplitude modulation
alone ...” it could be interpreted as a possibility of
implementing pulse compression in noncoherent
radar. Most likely the quoted statement refers to
amplitude modulation in addition to frequency or
phase modulation (like in a Huffman signal [2]),
which indeed is seldom used.

II. SUGGESTED PULSE-POSITION CODING FOR
ON-OFF RADAR PULSES

The procedure for creating a noncoherent
pulse-compression system is constituted from the
following four steps (each step is demonstrated by the
result for a Barker 13 example).

1) Choose a pulse-compression binary sequence.

B = f1 1 1 1 1 0 0 1 1 0 1 0 1g:
2) Create a transmitted sequence T by applying

Manchester coding [5] to B. In Manchester coding
“1”= 1 0 and “0”= 0 1.

T = f1 0 1 0 1 0 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 1 0g:

Manchester coding is used in OOK optical
communication [6]. One of its advantages is that
it equates the energy in the original “1” and “0”
elements. Note that T represents the actual signal
levels, namely when T = 1 the signal is on and when
T = 0 it is off. We refer to such a signal as “unipolar.”

3) Create a reference sequence R in which each 0
of T is replaced by ¡1.

R = f1 ¡ 1 1 ¡ 1 1 ¡ 1 1 ¡ 1 1 ¡ 1 ¡ 1 1 ¡ 1 1 1
¡ 1 1 ¡ 1 ¡ 1 1 1 ¡ 1 ¡ 1 1 1 ¡ 1g:

When a signal gets the values of R it is referred
to as a “bipolar” signal. Using a mismatched
bipolar reference signal instead of a unipolar signal,
matched to the transmitted signal, will result in a
cross-correlation (between T and R) with an average
value of zero.
4) Replace each chip of T and R with a narrow

pulse of height equal to the chip value, preceded
and followed by a null (zero) level. The pulses
in the modified T represent the envelope of the
transmitted amplitude-modulated carrier (and of
the envelope-detected received pulses). Setting
a pulsewidth shorter than the chip duration will
accommodate radar with limited duty cycle. The
pulses in the modified R represent the reference
pulses stored in the receiver. Note that the highest
output SNR value will be obtained when the widths
of the pulses in T and R are equal. In a LIDAR the
detected reflected pulses are likely to be wider than
the transmitted optical pulses. Hence, the reference
pulses should be matched to those wider pulses.

The resulted transmitted (solid line) and reference
(dotted line) signals for a Barker 13 case are plotted
in Fig. 1. The duty cycle of the transmitted pulses
is 1/5. The reference pulses are wider (by a factor
of 3) and their magnitude is lower. This was done
in order to clarify the plots. The resulted aperiodic
cross-correlation is plotted in Fig. 2. The delay scale
is normalized with respect to the chip duration of the
Barker code.
For comparison Fig. 3 presents the cross-

correlation that would have been obtained if the
reference signal did not include the negative pulses.
The resulted shape resembles the undesired broad
trianglular autocorrelation of a long rectangular pulse.
The advantage of Fig. 2 over Fig. 3 is obvious. As we
show in the next section, the negative reference pulses
exhibit some advantages in the presence of noise as
well.

III. PROPERTIES OF THE APERIODIC
CROSS-CORRELATION OUTPUT

Note in Fig. 2 that except for the two negative
near cross-corelation sidelobes, the mainlobe to
peak sidelobe ratio is 13 as in a conventional Barker
13 signal. Note also that the overall average of the
cross-correlation function is zero. The two negative
near-sidelobes (of levels ¡7 and ¡6) balance the +13
mainlobe. In coherent radar, the carrier phase of the
reflected signal can easily change. Hence, a positive
decision threshold is applied to the magnitude of the
coherent processor’s complex output. For this reason,
in coherent RF radar, negative cross-correlation
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Fig. 1. Transmitted (solid) and reference (dash) signals, based on Manchester-coded Barker 13.

Fig. 2. Cross-correlation between transmitted and reference signals in Fig. 1.

Fig. 3. Cross-correlation when reference signal includes positive pulses only.

sidelobes are as harmful as positive ones. In our case
no carrier phase is involved and the cross-correlation
cannot be inverted. The mainlobe will always be
positive, and therefore the decision threshold will
also be set at a positive value. In a coherent radar
range, sidelobes can cause two problems: 1) mask
the mainlobe of a nearby weaker target, and 2) when
noise is added to a large sidelobe it can cause a false
threshold crossing. In our noncoherent case, problem
2 is not likely to happen because additive noise is not
likely to bring the large negative near-sidelobes all
the way to a high positive value, that would cross
the threshold. The two large negative sidelobes can
still mask a weak second target, but only if the delay

difference between the two targets is one chip duration
of the transmitted code. If the target reflection
is relatively wide, then the correlation output
will effectively differentiate the target reflection,
emphasizing edges.
The delay resolution of this radar system

is approximately equal to the width of the
cross-correlation mainlobe. That width is determined
by the cross-correlation between a single transmitted
subpulse and a single reference subpulse. So the
role of the pulse coding is not to improve the delay
resolution over that of an individual subpulse, but to
allow integration of many dense subpulses without
creating ambiguous peaks.
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Fig. 4. Envelop detected (solid) signal plus noise, and reference (dash) signal, based on Manchester-coded Barker 13.

Fig. 5. Cross-correlation between detected and reference signals in Fig. 4.

The added negative reference pulses (which do
not exist in the transmitted signal) have a second
important role with regard to the noise and clutter
output. In coherent radar, adding such unmatched
receiving windows will double the output due to
clutter and noise power, causing approximately
3 dB SNR loss. In our case, as we show in the
appendix, the SNR loss due to the negative reference
pulses is typically less than 1 dB. After envelope
detection clutter returns and thermal noise are always
positive (when not added to a pulse). Because
the cross-correlation is performed after envelope
detection, adding negative receiving windows, equal in
number and area to the positive windows, is expected
to reduce the average of the output due only to noise
and clutter power. An example of the signal and
cross-correlation in the presence of relatively strong
noise is shown in Figs. 4 and 5. The envelope detector
follows square law. For these plots the width of the
reference pulses was made equal to the width of the
transmitted pulses (yielding the heighest SNR) and the
pulse duty cycle was increased to 1/3. In Fig. 4 we
simulated noise bandwidth wider than the inverse of

a pulsewidth. There are 10 independent noise samples
per pulsewidth, which are filtered using a 3 element
sliding window, before being added to the signal. In
Fig. 4 the signal plus noise is shown after square-law
envelope detection. In the resulted cross-correlation
(Fig. 5) we see a tolerable reduction of the mainlobe
to peak-sidelobe ratio. Note that without noise the
cross-correlation peak in Fig. 5 would be 13 exactly.
The statistics of the peak cross-correlation in the

case of noise-only input will determine the probability
of false alarm. The statistics of signal plus noise, will
determine the probability of detection. Probability
density functions (pdfs), obtained from numericall
simulations, are presented in the appendix. They are
compared with the case where the reference signal
includes only the positive pulses. Cross-correlation
with a reference signal that contains only the positive
pulses is equivalent to performing conventional
noncoherent pulse integration. The fact that the
transmitted pulses are dense and not equally spaced
does not alter that fact.
As the pdfs in the appendix show, the negative

pulses of the reference signal change dramatically
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Fig. 6. Cross-correlation with noise-only input. Reference signal includes both positive and negative pulses.

Fig. 7. Cross-correlation with noise-only input. Reference signal includes positive pulses only.

the nature of the output due to noise-only input. A
qualitative example of such a case is shown in Figs. 6
and 7. For this noise-only scenario we compare
qualitatively the cross-correlation outputs when the
reference signal includes the added negative pulses
(Fig. 6) and when they are not included (Fig. 7).
Comparing Figs. 6 and 7 we see that without the
balancing negative pulses of the reference, the
cross-correlation output (Fig. 7) has positive values
only and reaches a much higher peak. Note that the
duration of the noise-only input was not limited to the
duration of the reference signal, but was three times
longer.

IV. EXAMPLE OF A LONGER CODE

The longest known Barker code is of length 13,
which in our case implies that only 13 subpulses are
integrated. This may not be very useful. To obtain
integration of more subpulses we can resort to longer
bipolar pulse-compression codes. In this section we
present integration of 70 subpulses, using the longest
presently known [7] minimum peak sidelobe (MPSL)

binary sequence, with peak sidelobe of 4. The binary
sequence is

0 1 1 0 1 0 0 0 0 1 0 0 1 1 0 0 1 1 1 0 1 1 0

1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 1 1

1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 0:

Following the same procedure as in the Barker 13
case yields the noise-free cross-correlation presented
in Fig. 8. The signal duty cycle is 1/3 and the
transmitted and reference pulses have the same width.
Note that the height of the mainlobe peak is 70 while
the peak sidelobe level is 4. The ratio is 17.5, which is
better than in the Barker 13 case. The same ratio was
obtained in the original MPSL signal of length 70. For
other OOK signals based on binary signals we expect
the same peak sidelobe ratio as in the corresponding
original signals.

V. PERIODIC SIGNALS

So far our noncoherent pulse-compression
principle was applied to a single pulse. The coding
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Fig. 8. Cross-correlation between transmitted signal and reference signal, based on MPSL binary code of length 70.

Fig. 9. Transmitted and reference Manchester-coded periodic Ipatov signal, and its periodic cross-correlation. Two periods are shown,
each period contains 40 bits.

used in the examples were Barker 13 and MPSL
70. In this section we show that the same principle
can be applied to periodic CW signals. Since our
scheme converts bipolar keying to OOK, the phrase
“continuous wave” is not truly appropriate anymore.
However, we will keep referring to them as CW
signals because that is how they are referred to in the
literature on direct-detection CW lidars with OOK by
PN codes [8—11].
Continuing with our approach of modifying

well-known bipolar pulse-compression signals,
in the CW case we choose to modify what seems

to be the most appropriate candidate family of
periodic signals–Ipatov’s codes [12, 2 (sect. 6.5)].
An Ipatov’s signal is transmitted as bipolar signal
f+1,¡1g but the reference signal is mismatched. The
resulted periodic cross-correlation is perfect, namely
the sidelobes are identically zero. In the Ipatov code
f1 1 1 1 0 0 0 1 0 0 1 1 0 1 1 1 1 0 0 1 1 0 1 0 1 1
1 1 0 1 0 1 1 1 1 1 1 1 0 1g of length 40, the
reference signal is constructed from f+1,¡1:8g.
It is straightforward to apply our Manchester-

coded OOK to Ipatov’s signals. A demonstration
using Ipatov’s code of length 40 is given in Fig. 9.
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The three subplots show two periods of the periodic
transmitted signal (top), the reference signal (middle),
and the resulted periodic cross-correlation between
the two (bottom). Note that the perfect periodic
cross-correlation behavior (zero sidelobes) is
maintained except for the two negative near-sidelobes,
whose heights are half the height of the mainlobe.

VI. CONCLUSIONS

We showed how to integrate (noncoherently) many
dense noncoherent radar pulses by using methods
borrowed from coherent radar pulse compression. The
delay response of the integrated pulse train maintains
a single, narrow, main peak, and very low recurrent
peaks. Bipolar pulse-compression codes serve as
the basic pulse coding. Manchester coding modifies
the bipolar coding and converts the two polarities
into two pulse positions. The reference signal, with
which the unipolar detected returned pulses are
cross-correlated, is not matched. It is a train of both
the original positive pulses and an equal number of
negative pulses. This kind of mismatched reference
signal reduces the recurrent lobes in the presence
of the signal it was designed for, yet does not add
significant signal-to-noise ratio (SNR) loss (less than
1 dB). Two examples were presented in which the
number of integrated pulses were 13 and 70. We
also showed that the same concept can be applied to
periodic CW signal, and demonstrated it on Ipatov’s
periodic signal of length 40 that yields near-perfect
periodic cross-correlation.
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APPENDIX

The Monte Carlo runs described below
were performed in order to study the pdf of the
cross-correlation mainlobe, with and without signal,
using the two types of reference signals (unipolar and
bipolar) designed for the Manchester-coded Barker 13
signal.
The vector of signal samples S was constructed

from M = 13 identical samples of value A,
representing a nonfluctuating target

fSgk = A[1 1 1 1 1 1 1 1 1 1 1 1 1]: (1)

N1i, the first vector of M = 13 element noise
samples, representing the in-phase component of
the noise, was constructed from M independent,
identically distributed, random samples from a normal

distribution with zero mean and a standard deviation ¾
specified by the single-pulse SNR,

SNR=
A2

2¾2
) ¾ =

Ap
2
10(¡SNRdB=20) (2)

when A= 1, SNR of 4 dB implies ¾ = 0:4462. This
value of ¾ was used in all the simulations. The value
of A and the decision threshold were adjusted for each
case, to get a probability of false alarm PFA = 0:001
and a probability of detection PD = 0:9895. Another
similar and independent 13 element noise vector N1q
was created to represent the quadrature component.
Another independent similar pair was also created,
labeled N2i and N2q.
Following a square-law envelope detector [4],

the mainlobe of the cross-correlation with a bipolar
reference, when both signal and noise are present, is
represented by

x=
MX
k=1

[(Sk +N1ik)
2 +N1q2k ]¡

MX
k=1

(N2i2k +N2q
2
k):

(3)

When only noise is present the cross-correlation peak
is obtained from

xnoise =
MX
k=1

(N1i2k +N1q
2
k)¡

MX
k=1

(N2i2k +N2q
2
k):

(4)

Histograms of x and xnoise obtained with 40000 runs,
are plotted in Fig. 10. The histograms were created
using ¾ = 0:4462. To get the desired probability
of false alarm (PFA = 0:001) the threshold was set
at 6.45. To get the desired probability of detection
(PD = 0:9895) required A= 1:0752, implying a
single-pulse SNR of 4.63 dB. The histograms were
plotted using MATLAB’s ksdensity function with
the Epanechnikov kernel. The ksdensity function
produces a nonparametric density estimate using a
kernel smoothing technique.
When the reference signal contains only positive

pulses, the mainlobe of the cross-correlation
corresponds to conventional noncoherent integration
of M pulses, following a square-law detector. The
signal-plus-noise case is given by

y =
MX
k=1

[(Sk +N1ik)
2 +N1q2k]: (5)

The noise-only case is represented by

ynoise =
MX
k=1

(N1i2k +N1q
2
k): (6)

The corresponding histograms are plotted in Fig. 11.
The histograms were created using ¾ = 0:4467. To
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Fig. 10. PDFs corresponding to correlation with bipolar reference. Top: signal + noise. Bottom: noise only.

Fig. 11. PDFs corresponding to correlation with unipolar reference. Top: signal + noise. Bottom: noise only.

get PFA = 0:001 the threshold was set at 10.95. To get
PD = 0:9895 required A= 1:0, implying a single-pulse
SNR of 4 dB. The histograms in Fig. 11 represent the
pdfs of conventional noncoherent integration of 13
pulses reflected from a nonfluctuating target (Swerling
0) and detected by a square-law envelope detector.
The theoretical density functions, with and without

signal are given by

p(y) =
1

2¾2(M ¡ 1)!
³ y

MA2

´(M¡1)=2
£ exp

µ¡y¡MA2
2¾2

¶
IM¡1

µ
A

¾2

p
My

¶
(7)

CORRESPONDENCE 763



Fig. 12. PDFs corresponding to coherent integration. Top: signal + noise. Bottom: noise only.

p(y j A= 0) = 1
2¾2(M ¡ 1)!

³ y

2¾2

´M¡1
exp

µ ¡y
2¾2

¶
:

(8)

The theoretical pdfs are plotted in Fig. 11, on top
of the corresponding histogram results, showing
excellent agreement, thus validating the simulation.
The corresponding theoretical SNR required for the
specified PD and PFA is 3.94 dB, calculated using the
Shnidman approximation [13].
The detection performance of coherently detected

Barker 13 signal is obtained by treating the Barker
signal as coherent integration of M = 13 pulses. The
signal-plus-noise case is represented by

z =

vuut" MX
k=1

(Sk +N1ik)

#2
+

Ã
MX
k=1

N1qk

!2
(9)

and the noise-only case by

znoise =

vuutÃ MX
k=1

N1ik

!2
+

Ã
MX
k=1

N1qk

!2
: (10)

The histograms in Fig. 12 represent the pdfs of
the coherent integration output z. In order to get
the required PFA = 0:001 the threshold for the
coherent processing had to be set at 5.98. The
required PD = 0:9895 was obtained with A= 0:7328
implying a single-pulse SNR of 1.3 dB. The
theoretical pdfs for this form of coherent integration

TABLE I
Detection Performances of 13 Subpulses

Noncoherent, Noncoherent,
Unipolar Bipolar

Processing Coherent Reference Reference

PFA 0.001 0.001 0.001
PD 0.9895 0.9895 0.9895

Single subpulse SNR [dB] 1.3 4 4.63
Theoretical SNR [dB] 1.26 3.94 –

Loss [dB] 0 2.7 2:7+0:63 = 3:33

are given by

p(z) =
z

M¾2
exp

µ¡z2¡M2A2

2M¾2

¶
I0

µ
Az

¾2

¶
(11)

p(z j A= 0) = z

M¾2
exp

µ ¡z2
2M¾2

¶
: (12)

The theoretical pdfs are plotted in Fig. 12, on top of
the corresponding histogram results, again showing
excellent agreement. The corresponding theoretical
SNR required for the specified PD and PFA is 1.26 dB.
A summary of the detection performances appears

in Table I. We can conclude that: 1) noncoherent
processing caused an SNR loss of 2.7 dB, and 2)
adding the negative reference pulses caused an
additional loss of only 0.63 dB. Recall that adding
the negative reference pulses is what mitigated the
sidelobes of the aperiodic cross-correlation.
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The excellent agreement with theoretical results, of
the required SNR obtained from the simulations in the
matched unipolar case, and in the coherent processing
case, testifies to the validity of the simulations. We
can therefore assume that the simulation results
obtained with the new mismatched bipolar reference
are also valid, and the conclusion that the mismatch
processing caused an additional SNR loss of only
0.63 dB (for the code based on Barker 13) is correct.
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Tel Aviv University
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