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There are known phase-coded (two-valued or polyphase)

CW radar signals that exhibit perfect periodic autocorrelation

function (PACF). A PACF is perfect when all its out-of-phase

autocorrelation values are identically equal to zero. This paper

investigates periodic, two-valued, frequency-coded signals. While

none could be found with perfect PACF, we present examples with

nearly perfect PACF. Their relationship to binary phase-coded

signals is also considered. These signals should be attractive

for CW radars because of their simple implementation, clean

spectrum, and the favorable range response of their matched

receiver.
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I. INTRODUCTION

Constant amplitude signals with periodic
modulation waveform are used in CW radars.
When they exhibit perfect periodic autocorrelation
function (PACF), their range response is free of
sidelobes and resembles the range response of a
pulse train. Two-valued signals are easier to generate
than multi-valued signal, and among two-valued
phase-coded signals, those with binary envelope
f+1,¡1g are the simplest to transmit. However,
binary phase-coded signal suffer from two limitations:
1) there are no known binary signals longer than
4 that exhibit perfect PACF, and 2) their spectrum
extends much beyond the inverse of the bit duration,
with spectral sidelobes that decay slowly at a rate of
6 dB/octave.
At least two approaches are known for

circumventing the first limitation: 1a) replace the
binary phases f0±,180±g with two phase values with
different spacing [1, 2], and 1b) transmit a binary
signal, but at the receiver, cross correlate it with a
mismatched signal [3, 2, 4]. The penalty for the first
approach is the need to transmit a more complex
signal. The penalty of the second approach is an
SNR loss. We offer a third approach, in which we
relax the requirement for perfect PACF, and allow
small sidelobes at the vicinity of the mainlobe. The
phase-coded signal remains binary, and the receiver
remains matched.
In radar there are also at least two known

methods to approximate phase-coded signals by
frequency-coded signals: 2a) quadriphase coding
[5, 2], and 2b) derivative phase modulation (DPM)
[6, 7]. DPM resembles minimum shift keying (MSK)
used in communications. Both transformations
are used in pulse compression radar signals (not
necessarily periodic), to reduce spectrum sidelobes.
They are briefly described in Appendix A. We offer
a different transformation here from phase coding to
frequency coding, which is simpler, and yet works
well for periodic signals.
The complex envelope of a phase-coded signal is

defined by the duration tb of a phase element (called
bit) and by a sequence of complex numbers fcng,
n= 1,2, : : : ,N. The PACF of a periodic repetition
of such a signal [2] is straight lines, in the complex
plane, connecting the PACF values at integer multiples
of tb. These values are given by

R(ptb) =
1
N

NX
n=1

cnc
¤
n+p: (1)

A PACF is considered perfect if it yields

R(ptb) =
1
N

NX
n=1

cnc
¤
n+p =

½
1 p= 0 (mod N)

0 p 6= 0 (mod N) :

(2)
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Fig. 1. Phase evolution of Barker 4 sequence (each element stretches over 2 bits).

Fig. 2. PACF of Barker 4 sequence in Fig. 1.

The only known binary signal with perfect PACF is
the Barker signal of length 4. It can be described by
any cyclic shift of the sequence fcng= f111 ¡1g
corresponding to the phase sequence fÁng= ¼f0001g
through

cn = exp(jÁn): (3)

There are other two-valued phase-coded signals, but
not binary, that yield a perfect PACF [1, 2]. There are
many polyphase signals that yield perfect PACF, e.g.,
Frank code [8], Lewis-Kretschmer P3 and P4 codes
[9], and variations of them [10, 11]. An example
of a quaternary code that yields a perfect PACF is
described by the phase sequence

fÁng=
¼

2
f03130111g: (4)

Because we could not find long binary sequences
or two-valued frequency-coded sequences that yield
perfect PACF, in this paper we search for sequences
that yield nearly perfect PACF. For a periodic complex
envelope u(t) with unit magnitude ju(t)j= 1 and
period Ntb, “nearly perfect PACF” implies

jR(¿ )j=
¯̄̄̄
1
Ntb

Z Ntb

0
u(t)u¤(t¡ ¿)dt

¯̄̄̄

=

8><>:
1 ¿ = 0

a(¿)¿ 1 k0tb · j¿ j · ktb
0 ktb · j¿ j · (N ¡ k)tb

(5)

where ¿ is the delay modulo the period Ntb,
max[a(¿)] is much smaller than 1, and k0 · k < N=2.
We hope to find sequences where k is much closer
to 1 than to N=2. In a perfect PACF k = k0 = 1, and
the gap, where the PACF is identically zero, extends
over tb · j¿ j · (N ¡ 1)tb. In a nearly perfect PACF we
would like the PACF to be identically zero over as
large a gap as possible. Our “nearly perfect PACF”

should not be confused with the PACF obtained with
“almost perfect autocorrelation sequences” [12, 13].
That PACF exhibits a single, large, non-zero sidelobe
at ¿ = tbN=2.
Thanks to the experience gained from quadriphase

and DPM coding (see Appendix A), our main search
was limited to the case in which the two frequency
values were §¢f =§1=4tb, or 0 and +2¢f = 1=2tb.
Both choices are identical as far as the PACF is
concerned. They differ in their effective carrier
frequency. Forays into other frequency spacings were
futile.

II. SIMPLE RELEVANT ANALOGIES BETWEEN PHASE
AND FREQUENCY CODING

We begin our example by showing
frequency-coded signals derived from the Barker 4
signal. We first show the Barker 4 signal (Fig. 1)
and its PACF (Fig. 2), with the small modification
in which each phase element stretches over 2 bits.
Namely, the phase sequence of our “stretched” Barker
is: fÁng= ¼f00000011g. The Barker 4 signal is
compared with a frequency-coded sequence ffng=
1=2tbf00000101g (Fig. 3) and its PACF (Fig. 4).
Choosing the specific frequency separation of 1=2tb
causes a phase accumulation during one bit equal to

¢Á= 2¼
1
2tb
tb = ¼: (6)

That specific phase accumulation creates the similarity
to the “stretched” Barker 4 signal. Indeed, comparing
the PACFs in Figs. 2 and 4 (top subplot) shows
the similarity. The main difference is that while in
the “stretched” Barker 4 the PACF value becomes
identically equal to zero at ¿=tb = 2, the PACF of
the corresponding frequency-coded signal becomes
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Fig. 3. Phase (top) and frequency (bottom) evolution of 8 element frequency-coded signal.

Fig. 4. PACF of frequency-coded sequence in Fig. 3. Top: linear scale. Bottom: dB scale.

Fig. 5. PACF of frequency-coded sequence 1=2tbf000000001001g.

identically equal to zero at ¿=tb = 3. The Barker 4
signal can be “stretched” by factors higher than 2. For
example, using a stretch of 3 will result a frequency
coded sequence ffng= 1=2tbf000000001001g. Its
PACF is shown in Fig. 5. Of course any cyclic shift of
the sequence will yield an identical PACF.
We can generalize and state that following the

Barker 4 signal, and its stretched versions, we can
create a frequency-coded signal of length N that is a
multiple of 4, in which the positive frequency bits will
be located at fn,n+N=4gmod N. The PACF of such a
signal will reach a value of zero at a normalized delay

of
¿

tb
=
N

4
+1: (7)

The resulted PACF obeys the criteria outlined in (2)
with the parameters k = k0 = 1+N=4. Having k = k0
implies that there is only a wide mainlobe and no
sidelobe pedestal.
Stretching the Barker 4 code is not going to

produce signals that are significantly better than
Barker 4 itself. A search for N = 12 found a
phase-coded sequence fÁng= ¼f000111001001g
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Fig. 6. PACF of phase-coded sequence ¼f001110010010g.

Fig. 7. PACF of frequency-coded sequence 1=2tbf001001011011g.

Fig. 8. Top: PACF of frequency-coded sequence 1=2tbf0010010100000111g.
Bottom: PACF of phase-coded sequence ¼f0011100111111010g.

Fig. 9. PACF of phase-coded sequences. Top: fÁng= ¼f00000000011100011011g.
Bottom: fÁng= ¼f00011001001011010101g.
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Fig. 10. PACF of 20 element two-valued frequency-coded sequence f2tbfng= f00000000100100101101g.

Fig. 11. Periodic ambiguity function of 20 element two-valued frequency-coded sequence f2tbfng= f00000000100100101101g,
with filter matched to M = 8 periods of the signal.

and its corresponding frequency-coded sequence
ffng= 1=2tbf001001011011g that yield PACFs
with a narrower mainlobe and a sidelobe pedestal.
The PACFs of these sequences are shown in Figs. 6.
and 7. The PACF in Fig. 7 is better than the PACF in
Fig. 5, because its narrower mainlobe implies better
range resolution.
While it is obvious that in both frequency and

phase coding, all cyclic shifts, left/right flips, and bit
reversals yield the same PACF, for longer phase-coded
signals we often find two or more signals that yield
exactly the same PACF, yet the signals do not poses
any of the invariant permutations mentioned.
Stretching Barker 4 by a factor of 4 will

yield an N = 16 frequency-coded signal with the
expected PACF near-triangular mainlobe with
no sidelobe pedestal. However a better PACF
is obtained by many sequences, one of which
is ffng= 1=2tbf0010010100000111g. The
corresponding binary phase sequence is fÁng=
¼f0001110011111101g. Their PACFs appear in
Fig. 8.

The relationship between binary phase-coded
signals with phase sequence fÁng and
frequency-coded signals with frequency sequence
ffng, that yield similar PACF, is summarized by the
following equations (© is xor or sum modulo 2) :

2tbfn =
1
¼
Án©

1
¼
Á(n+1)mod N (8)

or any cyclic shift of it. The inverse of (8) is

1
¼
Á(n+1) =

1
¼
Án© 2tbfn: (9)

So far the lengths of the given sequences were
multiples of 4. There is a very simple explanation for
that. The unnormalized PACF of any binary f+1,¡1g
sequence of length N has a peak value N. A simple
inspection will reveal that at non-zero shifts the PACF
can only have values that are N ¡4, N ¡ 8, etc. (try:
++¡¡++). Since we look for PACF values that are
mostly 0, this implies that N must be a multiple of 4.
The next candidate is therefore length 20. Here we
found a very favorable PACF, which is closer to the
perfect than in the shorter lengths.

LEVANON & LEVANON: TWO-VALUED FREQUENCY-CODED WAVEFORMS 241



Fig. 12. Spectrum of complex envelope of 20 element two-valued frequency-coded sequence
f1=2+2tbfng= f00000000100100101101g.

TABLE I
Phase and Frequency Sequences that Yield Near Perfect PACF

N fÁn=¼g f2tbfng

12 0 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1

16 0 0 0 1 1 1 0 0 1 1 1 1 1 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 1 1 1

20a 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 1 0 1

20b 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1

24 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 1 0 0 0 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 1 1 1 0 0 1

28 0 0 1 0 0 1 1 0 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 0 0 1 0 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 0 1 1 1 1

32 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0 1 0 1

36 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 1 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 0 1 1 0 1 0 1 0 1 0 0 1 1 1 1 1 1 0 1 0 1

40a 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1

40b 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 1 1 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 1 1 1 0 1 1 0 1 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1

40c 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 1 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1

44a 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 1 1 0 1 1 0 1 0 0 1 0 1 0 0 1 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1

44b 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1

48a 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 1 0 0 1 1 0 1 0 0 1

48b 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 0 1 1 1 0 0 1 1 1 0 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 1 1 0 0 1 0 1 0 0 1 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 0 0 1

52a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 0 0 1 1 0 1 1 0 0 0 0 1 1 1 1 0 0 1 0 1 0 0 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 0 0 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1 0 0 0 1

52b 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 1 0 1 1 0 0 1 0 0 0 1 0 1 0 1 1 0 0 0 1 1 1 1 0 0 1 1 1 0 1 0 1 0 0 1

III. PACF FOR PHASE AND FREQUENCY CODED
SIGNALS OF LENGTH N = 20

In the case of N = 20 we found two very
interesting binary phase-coded signals with different
PACFs that are equal only at the grid points. These
are: fÁng= ¼f00000000011100011011g and
fÁng= ¼f00011001001011010101g. The two
PACFs are plotted in Fig. 9.
The corresponding frequency-coded sequences

are: f2tbfng= f00000000100100101101g and
f2tbfng= f00101011011101111111g. Despite
the fact that these are quite different frequency codes,
their PACFs are identical. One of them is shown
in Fig. 10. For this special signal we also plotted
(Fig. 11) the periodic ambiguity function (PAF) [2],
when the receiver is matched to 8 periods of the
signal. The performances of this signal are very close
to a perfect PACF.
Fig. 12 shows the spectrum of the complex

envelope of the 20 element signal whose PACF was
plotted in Fig. 10. To avoid a large frequency bias
the frequency coding was §¢f =§1=4tb. Note that
the spectrum is still slightly shifted toward negative
frequencies (a shift of about 0.1 in units of ftb). This

shift happens because the sequence has 14 elements of
¡¢f and only 6 elements of +¢f.

IV. SIGNALS WITH N > 20

As N increases the search becomes more
computational intensive. So far we have done
exhaustive searches for N = 24, 28, 32, 36, 40, and
44, and partial searches for 48 and 52. In all these
lengths we did not find frequency-coded sequences
that yielded a PACF whose zero sidelobes begin
after the third frequency bit. This is not a proof that
N = 20 was the only length that yielded such a
“perfect” PACF. For less perfect PACF, what is a
good PACF is less obvious, allowing several
interpretations.
Table I summarizes the results obtained for the

various lengths. When more than one signal appears
for a given length, it means that several good PACF
were found and are worth presenting. The following
plots demonstrate the different PACFs. We present
PACF plots of the phase-coded sequences, because
they are simpler (straight lines) and easier to interpret.
Note, for example, that at delays equal to integer
multiples of the bit duration, the lowest non-zero
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Fig. 13. PACF of 24 element binary phase-coded signal ¼f000001000110011010010111g.

Fig. 14. PACF of 28 element phase-coded signal ¼f0100110111111010101111001010g.

Fig. 15. PACF of 32 element phase-coded signal ¼f00000000000111110001011001100011g.

Fig. 16. PACF of 36 element signal ¼f000000001110010110110011000101010011g.

sidelobe must be 4=N and 4=N is also the smallest
spacing between sidelobe values. PACFs of signals of
length 24, 28, 32, and 36 appear in Figs. 13—16.
We use the 36 element phase-coded signal to

demonstrate that the property of near perfect response
holds when the reference signal is not exactly
matched, but contains amplitude weighting. We use
a Hamming window extended over 16 periods of
the signal, namely over a total of 16£ 36 = 576 bit.
The reference signal is shown in Fig. 17 and the
delay-Doppler response is given in Fig. 18.
Comparing the zero-Doppler cut in Fig. 18,

with the PACF in Fig. 16, demonstrates that adding

amplitude weighting did not alter the near perfect
response at zero-Doppler. As shown in [2, ch. 10]
this holds true as long as the weight window extends
over an integer number of periods. Comparing Fig. 18
with Fig. 11 shows that the inter-period Hamming
weighting clearly lowers Doppler sidelobes.
The PACFs of three different binary signal of

length 40 (Fig. 19), demonstrate a typical trade-off
between the width and height of the PACF sidelobe
pedestal. The height of the peak sidelobe in the top
subplot is 16=40 = 0:4, but the sidelobe pedestal
reaches zero at ¿=tb = 4. In the bottom subplot the
peak sidelobe is 4=40 = 0:1, but the sidelobe pedestal

LEVANON & LEVANON: TWO-VALUED FREQUENCY-CODED WAVEFORMS 243



Fig. 17. Hamming weighted 16 periods of 36 element binary phase-coded signal.

Fig. 18. Delay-Doppler response of periodic 36 element binary signal when mismatched reference signal extends over 16 periods and
is Hamming weighted.

reaches zero at ¿=tb = 8. The vertical scale of the
bottom subplot uses ticks at 0.1 intervals in order to
emphasize the sidelobe level of 0.1. Note in the signal
whose PACF appears in the top subplot (signal 40a in
Table I) that all the “1” or “0” runs in the sequence
are of even length. This implies that this signal is a
stretched version of a signal of length 20. Indeed, it is
a stretched version of signal 20b in Table I. PACFs for
signal lengths 44, 48, and 52 appear in Figs. 20—22.

V. SPECTRAL SHAPES

One motive for using frequency rather than
phase modulation is the spectral shape. We use
the N = 36 case to compare the spectrums of the
binary phase-coded and its corresponding two-valued
frequency-coded signals. The two spectrums are
shown in Fig. 23. Indeed, the spectrum of the

phase-coded signal (top) decays much slower than the
frequency-coded signal (bottom). Around fNtb = 486
or ftb = 13:5 the spectral level of the frequency-coded
signal is about 20 dB lower than the spectral level of
the phase-coded signal. The better spectral shape of
the frequency-coded signal is related to the smoother
shape of its PACF.

VI. SUMMARY AND CONCLUSIONS

We showed that two-valued frequency-coded
signals can yield near perfect PACF, when the code
length N is a multiple of 4, and the two frequency
values are §¢f =§1=4tb, or 0 and 2¢f = 1=2tb,
where tb is the duration of one element of the
sequence. By near perfect PACF we mean a narrow
mainlobe (2 bits or less) and a large gap in the center
of the PACF, in which the sidelobes are identically
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Fig. 19. PACF of the three 40 element binary signals in Table I. Top: ¼f0000001111000011000011001111001100110011g.
Middle: ¼f0000000001010110010100100110111010010101g.
Bottom: ¼f0000000000111101101100110000111000000111g.

Fig. 20. PACF of the two 44 element binary signals in Table I.
Top: ¼f00010001001010101010100100101110110100101001g.

Bottom: ¼f00000000000001110000100011110000011101110111g.

zero. The gap duration is 2/3 of the sequence length
or longer. Each frequency-coded signal of this type
has a corresponding binary phase-coded signal,
yielding a very similar PACF.
Exhaustive searches for such signals were

conducted up to and including length 44. For lengths
48 and 52 the search was extensive but not exhaustive.
The best signals found were listed in Table I, and
their PACF were plotted. N = 20 yielded signals with
PACFs that are the nearest to being perfect.

The PACF of the two types of signals
(phase-coded and frequency-coded) are quite similar,
with the PACF of the frequency-coded signal being
smoother. That smoothness contributes to its
improved spectral shape. The phase-coded signals
should be attractive for CW radars because of their
binary nature and because the near perfect
range response is obtained with a matched receiver,
with no SNR loss. The frequency-coded signals
should be attractive because of their two-value
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Fig. 21. PACF of the two 48 element binary signals in Table I.
Top: ¼f000000011100100001110011111001110000001000100111g.

Bottom: ¼f000000001001011010111001110010101000101000010111g.

Fig. 22. PACF of second 52 element binary signal in Table I.
¼f0000001001111110001101110000110010000101000101100111g.

Fig. 23. Spectrums (in dB) of the 36 element signals. Top: Binary phase-coded signal.
Bottom: Two-valued frequency-coded signal.
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nature, the matched receiver, and their clean
spectrum.
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APPENDIX A. QUADRIPHASE AND DPM

In constant-amplitude phase-coded radar pulse
compression waveforms, there have been attempts
to reduce bandwidth by replacing phase coding with
frequency coding. Quadriphase [5,2] is one example
of converting binary phase-coding into a two-valued
frequency coding (although the first and last bit use a
third frequency and are also amplitude modulated).
DPM [6,7] is another approach in which binary
phase coding is replaced by frequency coding. In
DPM each element of the original binary code is
divided into two bits, each of duration tb, which are
frequency shifted by either positive or negative value
¢f given by ¢f = 1=4tb. Frequency coding in DPM
is designed to achieve, at the end of each pair of bits,
an accumulated phase change of 0 or ¼, corresponding
to binary phase values. Zero phase accumulation
is obtained when during the first bit of the pair the
frequency step is ¢f = 1=4tb yielding accumulated
phase of 2¼¢ftb = ¼=2, and during the second bit the
frequency step is ¡¢f yielding accumulated phase of
¡¼=2; hence, zero total phase accumulation during
a pair of bits. Phase accumulation of ¼ (or ¡¼) is
achieved by maintaining the frequency step of ¡¢f
during both bits in the pair.
There are several variations to DPM and its

relation to the original binary phase-coded sequence.
In one variation an FM pair of f¢f,¡¢fg is used
to represent the first element of a binary sequence,
and whenever the current element is identical to
the previous element. A f¡¢f,¡¢fg FM pair is
used when the current element is different from
the previous element. The above rule implies that
even bits are always coded by ¡¢f, while odd bits
can have either negative or positive ¢f shifts. It is
interesting to note that in quadriphase coding the
two frequency values are also §¢f =§1=4tb, but
the relationship with respect to the original phase
code is different than in DPM. The name quadriphase
hints to the fact that during each bit the accumulated
phase shift is §¼=2, thus the phase (modulo 2¼) at
time instances corresponding to multiples of the bit
duration can have four equally spaced values.

There is only limited analogy between two-valued
frequency coding (with §¢f =§1=4tb) and
quaternary phase coding (where the alphabet are
the 4th roots of unity). In two-valued frequency
coding the accumulated phase changes between time
intervals equal to one bit duration must be §¼=2. In
quaternary phase coding there can also be contiguous
identical phase values, as well as phase jumps of §¼.
For example, the quaternary phase-coding sequence
¼=2f03130111g, which yields perfect PACF, cannot
have a corresponding two-valued frequency-coded
sequence.
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