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Abstract: The growing interest in adopting pulse compression waveforms to non-coherent radar and radar-like systems
(e.g. lidar) invites this update and review. The authors present different approaches of designing on–off {1, 0} coded
envelopes of transmitted waveforms whose returns can be envelope detected and non-coherently processed. Two
approaches are discussed for the aperiodic case: (a) Manchester encoding and (b) mismatched reference. For the
periodic case, on–off sequences are described, which produce perfect periodic cross-correlation when cross-correlated
with one or more integer number of periods of a two-valued reference sequence {1, −b}. This study provides
comprehensive rules for designing periodic on–off waveforms and their references. The periodic waveform’s high-
average duty cycle (over 50%) makes it a ‘quasi continuous wave (CW) non-coherent waveform’, which avoids the
pulse–train conflict between average power and unambiguous range. Good experimental results with a laser range
finder are presented. Reports on other uses are quoted.
1 Introduction

Direct-detection lidar, non-coherent (magnetron) radar, sonar,
ultrasound, ground penetrating radar, optical masks and optical
time domain reflectometer (OTDR) are examples of non-coherent
radar or radar-like systems that are likely to use unmodulated
pulses and detect the intensity (envelope) of their reflection.
Aperiodic on–off pulse sequences for such systems were discussed
under the topic of non-coherent pulse compression (NCPC) [1].
Complementary pairs [2] and periodic sequences [3, 4] were also
discussed. The basic approach of creating suitable waveforms for
the aperiodic case is to create a unipolar sequence by Manchester
encoding a binary sequence known to be useful in coherent pulse
compression; or by Manchester encoding a binary complementary
pair. The reference sequence with which the received signal is
cross-correlated could be either a binary bipolar version of the
Manchester-encoded sequence, or a straightforward mismatched
filter (MMF) designed for the unipolar sequence. In its first part,
the present paper reviews and compares the aperiodic waveforms
and their different processing approaches. The second part presents
new results for the periodic case. The importance of periodic on–
off waveforms stems from the fact that with proper periodic
reference sequences, periodic unipolar sequences can yield perfect
periodic cross-correlation (PPCC) whose sidelobes are identically
zero. Periodic sequences also exhibit high duty cycle which may
be attractive to some applications and a hindrance to others.
Moreover, described are unique periodic coherent waveforms that
can be processed coherently or incoherently and in both cases
produce PPCC.
2 Aperiodic on–off waveforms

The discussion and comparison of on–off aperiodic waveforms and
their processing approaches will start with a simple example based
on the well-known coherent pulse compression sequence Barker 13

S1 = +1 + 1 + 1 + 1 + 1 − 1 − 1 + 1

+ 1 − 1 + 1 − 1 + 1
(1)
There are at least two ways in which Barker 13 can be transformed to
an on–off transmitted signal: (a) Manchester encoding (+1 → 1 0,
−1→ 0 1) and (b) transmitting only the positive elements
(+1 → 1, −1→ 0). We will now discuss both approaches.

2.1 Transmitting Manchester-encoded barker 13

Manchester encoding of the sequence S1 will create the sequence S2
that can be easily transmitted by pulses from a non-coherent source

S2 = 1 0 1 0 1 0 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 1 0 (2)

Ignoring attenuation, noise and multiple targets, envelope detection
of point target reflected S2 will equal S2. Aperiodic
cross-correlation of S2 with a reference binary sequence Sref =
2S2− 1 will produce the output shown in Fig. 1. The positive
values resemble the compressed response of a coherent Barker 13.
However, the negative deeps cannot be ignored. A weak target
whose delay coincides with any negative deep in Fig. 1 (created
by the response of a strong target) may not be detected.

A major drawback of the Manchester encoding approach is the
doubling of the signal duration, compared with the duration of the
coherent signal (assuming equal code element duration). The delay
resolution is the width of the sub-pulse, which can be equal or
smaller than the duration of the code element.

2.2 Transmitting unipolar Barker 13

An approach that is free of the Manchester encoding drawbacks is to
transmit the unipolar version of S1, namely, S3 = (S1 + 1)/2

S3 = 1 1 1 1 1 0 0 1 1 0 1 0 1 (3)

Following non-coherent envelope detection, the receiver
cross-correlates the detected envelope with an MMF to S3,
designed to minimise the integrated cross-correlation sidelobes. A
twist to the design is to give more weight to the near sidelobes, as
shown in [5]. If the extent of the zone defined as near sidelobes is
about half the length of the entire sidelobes span, then there is
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Fig. 1 Aperiodic cross-correlations between Manchester-encoded Barker 13 (s2) and its reference (sref)
only negligible increase in the height of the remaining sidelobes. The
middle subplot in Fig. 2 shows an example of a minimum integrated
sidelobes filter of length 65 (=5 × 13) in which reduction of the
cross-correlation near sidelobes was emphasised (bottom subplot).

The unipolar sequence will maintain the correlation property even
if the sequences (transmitted and reference) are spread by inserting
any fixed number of ‘zeros’ between sequence elements, which we
will refer to as ‘zero padding’. Fig. 3 displays an example in
which four zeros were inserted after each ‘1’ or ‘0’ in the
transmitted signal (and also after each element of the MMF). The
range resolution is now determined by the sub-pulse width rather
than by the element width.

2.3 Transmitting complementary unipolar pair

Manchester encoding allows sidelobe reduction of on–off coding
through the complementary pair concept [2]. We present an
example based on the 26 element complementary kernel (Table 1).

Fig. 4 displays the delay response obtained by cross-correlation of
the pair of transmitted pulses with the pair of reference pulses. The
mainlobe reaches a value equal to the sum of ‘1’ elements in the
Fig. 2 Aperiodic cross-correlations between a unipolar Barker 13 (s3) and a mi
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pair (=52). Here again we see the two immediate large negative
sidelobes with half the mainlobe height. Contrary to coherent
complementary pair, the near sidelobes do not disappear
completely but stay between −1 and 1 values, independent of the
length of the sequences. Around a delay equal to the pulse
repetition interval (PRI) we observe the expected recurrent lobes
resulted from the cross-correlation between pulse #1 and reference
#2, with a symmetrical lobe when pulse #2 is correlated with
reference #1.

As pointed out and demonstrated in [2] non-coherent processing is
sensitive to close targets, whose return may partially coincide. On
the other hand, while usage of complementary pairs in coherent
systems is limited because of strong sensitivity to Doppler shift, in
non-coherent processing that problem has little or no impact.

It should be noted that the use of unipolar complementary pairs
was reported with regard to direct-detection OTDR [6]. The
approach there did not employ two Manchester-encoded unipolar
pulses but four unipolar pulses: (a) the unipolar first sequence, (b)
its 1’s complement, (c) the unipolar second sequence and (d) its
1’s complement. The detected returns of (a) and (b) were
subtracted, and the detected returns of (c) and (d) were subtracted,
smatched reference
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Fig. 3 Reduced duty cycle version of Fig. 2
to result in a bipolar estimated versions of the two sequences. Those
were then correlated with the two original bipolar sequences.
3 Periodic on–off waveforms

Barker 13 can serve also as a good example to start the discussion on
periodic waveforms. Note that the unipolar version, S3, of Barker 13
and the two-valued reference sequence

S4 = 1 1 1 1 1 b b 1 1 b 1 b 1, b = −2 (4)

will produce PPCC with a peak of 9 and all off-peak sidelobes
identically zero (Fig. 5). As a matter of fact unipolar versions of
all Barker sequences will produce PPCC with their respective
two-valued reference sequence. The required values of b are:
b =−2 for Barker 4 and 13, b =−3 for Barker 5, and b =−1 for
Barkers 3, 7 and 11.

In the periodic cases too, the unipolar sequence will maintain the
PPCC property even if the sequences (transmitted and reference) are
spread by zero padding (inserting any fixed number of ‘zeros’
between sequence elements).

When using periodic sequences, we would like to get both good
delay resolution (= the element or sub-pulse width), large
Table 1 Complementary pair

First pulse
signal 0 1 0 1 0 1 1 0 1 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1

1 0 1 0 0 1 0 1 1 0 0 1 0 1 0 1 0 1
reference -1 1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 1 -1

-1 1 1 -1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 -1 1 -1 1 -1 1 -1 1
second pulse

signal 0 1 0 1 0 1 0 1 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 1 0
0 1 1 0 1 0 1 0 0 1 0 1 1 0 1 0 1 0

reference -1 1 -1 1 -1 1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 1
-1 1 -1 1 1 -1 -1 1 1 -1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 1 -1
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unambiguous delay (= element duration times the number of
elements) and high average power (dense elements). This calls for
long sequences, much longer than the 13 elements of the longest
Barker. In the following sections, we will discuss three families of
codes that can provide very long periodic sequences: M-sequences
(maximum length shift register sequences), Legendre sequences
and Ipatov sequences.
3.1 M-sequences (shift register sequences,
maximal-length sequences)

The original binary {±1} version of a shift register sequence [7]
produces a two-valued ideal periodic auto-correlation, with peak of
N (the code length) and uniform off-peak sidelobe level of −1. It
turns out that the cross-correlation between the unipolar version of
the code {1, 0} and the binary version {+1, −1} is perfect with a
peak equal to the number of ‘1’s in the code and uniform off-peak
sidelobe level which is identically zero. To allow a readable
drawing, the example for shift register sequence will be of length
15 (Fig. 6).

The auto-correlation of the coherent bipolar version is insensitive
to reversed polarity. The situation is different for the unipolar
version. Note that in a unipolar m-sequence the number of ‘1’
elements is either larger or smaller than the number of ‘0’
elements, by one element. For the bipolar {±1} reference to
produce PPCC, the unipolar signal should be the one in which the
number of ‘1’s is larger than the number of ‘0’s. M-sequences are
found in lengths of N = 2n− 1, n = 2, 3, …, which are rather
sparse. Between lengths of 1000 and 10,000, there are only four
available lengths (1023, 2047, 4095 and 8191). On the other hand,
at each length several different codes can be found.
3.2 Legendre sequences (quadratic residue sequences)

A much more dense availability is obtained from Legendre
sequences [8]. They are available for lengths N = 4k− 1, with N a
IET Radar Sonar Navig., 2016, Vol. 10, Iss. 1, pp. 216–224
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Fig. 4 Delay response of Manchester-encoded 26 element complementary pair (from Table 1)
prime and k any integer. Between lengths of 1000 and 10,000 there
are 519 available Legendre sequence lengths. However, at each
length there is only one sequence (excluding trivial
transformations). Here too a binary {+1, −1} reference will result
in PPCC as long as the unipolar signal has more ‘1’s than ‘0’s.
Fig. 5 Four periods of unipolar Barker 13 (top), one period of the corresp
cross-correlation (bottom)
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3.3 Ipatov binary sequences

Ipatov sequences [9, 10] are binary sequences {+1, −1} that
originally produce PPCC when the reference signal is {+1, −b},
or {+1, −b, −c}. Ipatov signals can also be used as unipolar
onding bipolar reference (middle) and a section of the resulted periodic
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Fig. 6 Four periods of 15 elements unipolar m-sequence (top), one period of the corresponding bipolar reference (middle) and a section of the resulted periodic
cross-correlation (bottom)
signals with a two-valued (or three-valued) reference. A table of
available Ipatov signals appears on p. 139 of [10]. For the unipolar
signal lengths 5, 13, 21, 40, 121 and 1093, the respective values
of b are: 3, 2, 3, 2, 2 and 2. Ipatov 624 is an example when a
three-valued reference is required: b = 1 and c = 2. The unipolar
Ipatov codes have significantly more ‘1’s than ‘0’s. For example,
Ipatov 40 has 27 ‘1’s, Ipatov 121 has 81 ‘1’s, Ipatov 171 has 98
‘1’s, Ipatov 624 has 498 ‘1’s and Ipatov 1093 has 728 ‘1’s.
4 Calculating the reference values

As mentioned earlier, the transformation of a binary signal sb to a
unipolar signal su is linear

su = sb + 1
( )

/2 (5)

If the binary signal sb and its reference signal sref have a two-level
periodic cross-correlation, a PPCC can be obtained between the
unipolar signal su and a reference signal s̃ref which is a linear
transformation of the reference for the binary signal

s̃ref = a sref + b
( )

(6)

By definition, the two-level periodic cross-correlation function of the
binary signal and its reference is

C(n) =
∑N−1

k=0

sb(k) · s∗ref ((n+ k) mod N )

= E, n = 0 mod N

F , n = 0 mod N

{
(7)

where E = ∑N−1
k=0 sb(k) · s∗ref (k) is the correlation’s mainlobe level

(energy for auto-correlation) and F is the off-centre correlation
level. The conjugate symbol ()* appears in (7) and the following
equations in order to adhere to the general definition of
correlation. However, in our case the signals, envelopes and
sequences are all real.
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Demanding PPCC for the unipolar and reference signals implies

C̃(n) =
∑N−1

k=0

su(k) · s̃∗ref ((n+ k) mod N ) = K, n = 0 mod N

0, n = 0 mod N

{

(8)

where the peak value K is arbitrarily defined as the number of 1’s in
one period of su.

Combining (5)–(8) yields the required values for α and β for
PPCC

b = − F + N · �s∗ref
N + N · �sb

, a = 2K

E + N · �s∗ref + 2bK
(9)

where the notation �a denotes the average of the sequence a over one
period. As the values of a binary signal sb can only be ± 1, the
average over one period is

�sb =
(+1) · K + (−1) · (N − K)

N
= 2K − N

N
(10)

Therefore, (9) can be simplified to

b = − F + N · �s∗ref
2K

, a = 2K

E − F
(11)
4.1 Barker codes

For Barker codes E = N, and the reference signal sref is identical to
the binary signal sb. By applying the linear transformation (6) on
the binary reference using the values in (11) reveals that the
alphabet values of reference signal s̃ref are {α (β + 1), α (β −
1)} = {1,− (4K/(N− F )) + 1}. Table 2 summarises the parameters
for Barker codes.

4.2 M-sequences and Legendre sequences

M-sequences and Legendre sequences (as well as other types of
binary sequences that correspond to cyclic Hadamard difference
IET Radar Sonar Navig., 2016, Vol. 10, Iss. 1, pp. 216–224
& The Institution of Engineering and Technology 2016



Table 2 Parameters for Barker codes

N K F α β Reference alphabet

Barker 3 3 2 −1 1 0 {1, − 1}
Barker 4 4 3 0 3/2 − 1/3 {1, − 2}
Barker 5 5 4 1 2 − 1/2 {1, − 3}
Barker 7 7 4 −1 1 0 {1, − 1}
Barker 11 11 6 −1 1 0 {1, − 1}
Barker 13 13 9 1 3/2 − 1/3 {1, − 2}

Table 4 Coherent and non-coherent processing of periodic Ipatov 7
coded pulse train

Transmitted ternary Ipatov 7 1 1 −1 0 0 1 0
detection synchronous envelope
detected signal 1 1 −1 0 0 1 0 1 1 1 0 0 1 0
reference 1 1 −1 0 0 1 0 1 1 1 −1 −1 1 −1
periodic correlation 4 0 0 0 0 0 4 0 0 … 4 0 0 0 0 0 4 0 0 …
sets) exhibit three properties: (a) E =N, (b) the number of 1’s in the
code is either larger or smaller than the number of 0’s by 1 so K = (N
± 1)/2 and (c) the off-centre auto correlation is F = − 1 [7].
Therefore, by applying the linear transformation (6), the alphabet
values of reference signal s̃ref are either {+ 1,− 1} for the case that
there are more 1’s, and {+ 1,− (N− 3)/(N + 1)} for the case that
there are more 0’s. This implies that for the case where there are
more 1’s, using the binary code as a reference for the unipolar
code would give PPCC.

4.3 Ipatov binary sequences

For Ipatov binary sequences, the reference signal is different than the
transmitted binary signal, and consists of either two or three different
symbols, so the reference’s alphabet for the unipolar signal has also
two or three symbols, respectively.

The fact that Ipatov binary sequences exhibit PPCC implies that
F = 0, so the linear transformation constants are simplified to

b = − N · �s∗ref
2K

, a = 2K

E
(12)

The number of 1’s in a (q, v, r)-Ipatov sequence of order n is K =
qn−1(q− r) (for a detailed treatment of Ipatov binary sequences
see [9]). Table 3 summarises the parameters for several Ipatov codes.
5 Periodic waveforms that allow both coherent
and non-coherent processing

The finding that unipolar Barker codes can produce PPCC with the
corresponding binary Barker codes prompted an interesting example
of combining coherent and non-coherent periodic processing. The
example utilises Ipatov’s periodic ternary codes [11, 12] of length
7 {1, 1, −1, 0, 0, 1, 0} and 13 {1, 1, −1, 1, 1, 0, 0, 1, −1, 0, –1,
0, 1}. Each code can be transmitted as a train of pulses with
inter-pulse coding of both amplitude and phase. When periodically
transmitted, synchronously detected and coherently processed,
such a periodic pulse–train yields perfect periodic auto-correlation.
The effective response extends the unambiguous delay to 7 (or 13)
times the PRI. Namely, the signal will behave like a conventional
uncoded coherent pulse–train with 4 (or 9) times the pulse
intensity and 7 (or 13) times the PRI.

However, when envelope detected and incoherently processed, the
pulse–train becomes a unipolar Barker 7 (or Barker 13), which can
Table 3 Parameters for some Ipatov codes

(q, v, r) n N K F α β Reference alphabet

3, 1, 1 2 4 3 0 3/2 − 1/3 {1, − 2}
3 13 9 0 3/5 − 1/3
4 40 27 0 3/14 − 1/3
5 121 81 0 3/41 − 1/3

4, 1, 1 2 5 4 0 4/3 − 1/4 {1,−3}
3 21 16 0 4/11 − 1/4
4 85 64 0 4/43 − 1/4

5, 4, 2 2 24 15 0 1/6 − 1 {1,−1,−2}
3 124 75 0 1/26 − 1

7, 3, 2 2 24 14 0 1/4 − 1 {1,−1,−2}
3 171 98 0 1/25 − 1
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also produce perfect correlation, albeit when cross-correlated with
its periodic reference. For Ipatov 7 the signals involved in the two
processing approaches are summarized in Table 4. The signals for
the Ipatov 13 case can be easily deduced, but the negative values
in the reference will be −2. Note that at length 13 there is another
essentially different ternary code {1, −1, −1, 1, 1, 0, 0, −1, −1, 0,
−1, 0, −1}.

The identical (for both processing concepts) periodic correlations,
seen on the last row of Table 4, are somewhat deceiving. This is a
noise-free correlation result. The fact that the sum of squares of
the reference elements in the non-coherent processor is 7/4 (or 25/
9) times the sum in the coherent case, implies considerably more
sensitivity of the non-coherent processor to the presence of noise.
There are additional advantages to the coherent processing but the
option to switch to non-coherent processing may be useful if the
scene’s coherency is lost.
6 Performances with noise (simulation)

The simulation was performed with periodic Ipatov 121 unipolar
signal, a section of which appears in the lower subplot of Fig. 7.
There were five samples per code element (‘bit’). Independent
additive white Gaussian noise (AWGN) was added to each received
sample. An example of the same signal section with additive
noise (signal-to-noise ratio (SNR) = 0 dB) is shown in the top
subplot. The reference Ipatov 121 contained 3 periods. Recall that
for unipolar Ipatov 121 the reference replaces each 0 with −2.
A section (longer than one period) of the output of the periodic
cross-correlation is shown in Fig. 8. The peak sidelobe ratio (PSLR)
in Fig. 8 is 19 dB, which promises both high probability of
detection and good delay measurement accuracy.
7 Experimental results with a laser range finder
and other applications

Pulse–train laser range finders suffer from the conflict between
unambiguous range and average signal power [13, 14]. Large
unambiguous range requires large PRI; hence, the target is
illuminated by low-average power. In our periodic waveform, the
average power is a constant and the unambiguous range can be
increased by increasing the code length. To demonstrate this
advantage NCPC of a periodic sequence was employed in a laser
range-finding experiment. Light from a laser diode was repeatedly
modulated by a 4003 bit-long unipolar Legendre sequence. The bit
duration was 1 ns, corresponding to range resolution ΔR = 15 cm
[15]. The modulated waveform was amplified to a transmission
optical power of 22.5 dBm and launched toward a target at 100 m
distance. The target was a sheet of white paper whose relative
power reflectivity is ρ = 0.07. Reflected echoes were collected by a
lens of 10 cm diameter into an avalanche photo-receiver, which
is characterised by noise-equivalent optical power of −43 dBm.
The optical power of the collected echoes was −58 dBm,
corresponding to an SNR of the electrical signal at the receiver
output of −30 dB. The received signal was cross-correlated with
45 periods of the reference, implying an integration time of 180
µs. The resulted range response is shown in Fig. 9 (zoom on ±30
m off the 100 m nominal range). Without zoom we would see
recurrent peaks spaced 600 m apart (=4003×0.15 m). Range
resolution of 15 cm and a PSLR of over 27 dB are obtained.
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Fig. 7 Section of unipolar Ipatov 121 signal (bottom) and received with AWGN (top). SNR = 0 dB

Fig. 8 Section (longer than one period) of the output of the periodic cross-correlation. SNR = 0 dB

Fig. 9 Measured delay response of incoherent, continuously coded lidar echo, collected from a Lambertian reflector target (white paper) at 100 m distance. The
measurement electronic SNR was −30 dB

IET Radar Sonar Navig., 2016, Vol. 10, Iss. 1, pp. 216–224
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Fig. 10 Two-target setup at a range of 273 m
An earlier version of a laser range finder was reported in [16]. It
used an aperiodic unipolar coded pulse based on an 1112 element
binary sequence with low-correlation sidelobes. The same signal
was also used in high-resolution, distributed fibre sensors of local
temperature and mechanical strain. In this particular application,
hundreds of weak reflection events were simultaneously
interrogated [17]. The use of an on–off periodic code in an optical
mask, in order to improve image resolution, was recently reported
[18]. Aperiodic optical masks are used in many other fields. An
example from cytometry is described in [19].
8 Eclipsing and interference

When the returns from one target coincide with the returns from a
second target, an interference problem may result. Such
interference is more pronounced in non-coherent processing than
in coherent processing. When an aperiodic waveform is used, the
interference effect declines as the delay difference between the two
targets increases [3]. The interference disappears when the delay
difference is longer than twice the signal duration. When a
periodic signal is used, the interference from a second target may
occur independent of the delay difference. This is why a periodic
waveform suits a lidar application. The extremely narrow beam
illumination makes it unlikely that a second target, especially at
much closer range than the main target, will be also illuminated. A
laser range finder is a practical and good example for our
technique because there is negligible or no direct reception of the
Fig. 11 Averaged delay response of the two-target setup (zoom around R0 = 273
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transmitted signal, and there is usually only one target within the
illumination beam.

The near 50% duty cycle of transmitted periodic signals based on
m-sequences, Legendre sequences and some Ipatov sequences,
increases the eclipsing probability. Good isolation (e.g. in a
bistatic configuration) could be one solution. The effect of
eclipsing can be reduced by reducing the duty cycle, as shown by
the zero padding described earlier. Another approach is choosing
sequences with inherent low-average duty cycle. One example is a
unipolar Ipatov sequence of length 133, whose average duty cycle
is about 10%.

Integration of many coded pulses, or periods, improves SNR
and also contributes to reduced interference from neighbouring
targets. Non-coherent sub-pulses are likely to have random initial
phases and possibly also some variability in carrier frequency.
Sub-pulses returning from two targets are therefore likely to
have their phase difference different for each coinciding
sub-pulses. At the receiving antenna destructive interferences
vary and are averaged, thanks to the large number of sub-pulses
in an aperiodic pulse or in a periodic sequence. Furthermore,
additional averaging is due to the large number of pulses or
periods integrated during the relatively long processing interval.
We therefore expect acceptable performances even in multi-target
situation.

An experimental setup is shown in Fig. 10, where two closely
spaced targets were positioned at a range of 273 m, in a way that
will cause simultaneous illumination by the laser beam. The laser
details are as outlined in Section 7. To accommodate the
additional range and the halving of each target area, the processing
included averaging of 1000 measurements. The resulted response
(around a range of 273 m) is given in Fig. 11. Note the third peak,
with relative intensity of −15 dB and additional delay equal to the
delay between the two targets. We attribute the third peak to the
triple bounce.
9 Conclusions

This paper reviewed NCPC and presented progress in both aperiodic
and periodic on–off waveforms and in their non-coherent processing.
A prominent new result in aperiodic waveforms is the transmission
of their original unipolar version and correspondingly using an
MMF in the receiver. For periodic waveforms, the use of unipolar
versions of Shift register, Legendre and Ipatov sequences was
described, which, when cross-correlated with their appropriate
two-valued (or three-valued) bipolar reference, produce
sidelobe-free periodic response. Good experimental results were
m)
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shown, as obtained from a low-power lidar range finder that uses a
4003 element on–off periodic code based on a Legendre sequence.
The experimental results also showed good tolerance to a
two-target illumination scene. Periodic on–off waveforms are
especially suited to lidar range measurements because (a) lasers
lend themselves to very fast on–off keying and their non-coherent
detection is relatively simple to implement, (b) periodic waveforms
avoid the pulse–train conflict between average power and
unambiguous range and (c) due to the extremely narrow laser
illumination, it is unlikely that clutter or close targets will be
illuminated and eclipse the periodic waveform returning from the
desired distant target.
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