
Adaptive antenna systems.
Proceedings of the IEEE, 55 (Dec. 1967), 2143.

[2] Applebaum, S.P. (1976)
Adaptive arrays.
IEEE Transactions on Antennas Propagation, AP-24 (Sept.
1976), 585.

[3] Lacoss, R.T. (1968)
Adaptive combining of wideband array data for optimal
reception.
IEEE Transactons on Geoscience Electronics, GE-6 (May
1968), 78.

[4] Griffiths, L.J. (1969)
A simple adaptive algorithm for real-time processing in
antenna arrays.
Proceedings of the IEEE, 57 (Oct. 1969), 1696.

[5] Frost, O.L. III (1972)
An algorithm for linearly constrained adaptive array
processing.
Proceedings of the IEEE, 60 (Aug. 1972), 926.

[6] Rodgers, W.E., and Compton, R.T., Jr. (1979)
Adaptive array bandwidth with tapped delay-line processing.
IEEE Transactions on Aerospace and Electronic Systems,
AES-15 (Jan. 1979), 21.

[7] Mayhan, J.T., Simmons, A.J., and Cummings, W.C. (1981)
Wideband adaptive antenna nulling using tapped delay-lines.
IEEE Transactions on Antennas Propagation, AP-29 (Nov.
1981), 923.

[8] Cantoni, A., and Godara, L.C. (1982)
Fast algorithms for time domain broad band adaptive array
processing.
IEEE Transactions on Aerospace and Electronic Systems,
AES-18 (Sept. 1982), 682.

[9] White, W.D. (1983)
Wideband interference cancellation in adaptive sidelobe
cancellers.
IEEE Transactions on Aerospace and Electronic Systems,
AES-19 (Nov. 1983), 915.

[10] Gupta, I.J., and Ksienski, A.A. (1983)
Prediction of adaptive array performance.
IEEE Transactions on Aerospace and Electronic Systems,
AES-19 (May 1983), 380.

Numerically Efficient Calculations of Clutter
Map CFAR Performance

An alternative expression for the false alarm probability of

clutter map constant false alarm rate (CFAR), as derived by

Nitzberg, is suggested. The new expression converges more rapidly.

Performance analysis of clutter map constant false
alarm rate (CFAR) with exponential smoothing appeared
recently [1]. Nitzberg has reached a closed-form solution
for the case of a fluctuating target with a Rayleigh
(amplitude) probability density function. Exponential
smoothing refers to a recursive background estimate at a
given cell, which can be described by

Pn= (1 w)pi 1 + wqn; 0<w< 1 (1)

where Pn is the present background estimate, Pn- is the
previous estimate, qn is the present input, and w is a
weight coefficient. Target-present decision is made by
comparing the recent input with the previous background
estimate multiplied by a scaling factor c,

(2)q, >CP-1
For this implementation and for a fluctuating target

with an average signal-to-noise power ratio (SNR),
Nitzberg's results can be summarized as follows: The
false alarm probability is given by

1
PFA 1 Mm

H1 [1+cw(l-w)m]
m=O

M > oc (3)

and the detection probability is given by a similar
expression,

p _ 1
D M

H [l±+CDW(l -W)m]
m-O

M Xc (4)

where

c
CD = SNR1 + SNR

(5)

In order to reach numerical results, Nitzberg
approximated the infinite product by an M = 1000 term
product. Convergence was checked by comparing the
1000 term product to a 500 term product.

Faster convergence can be obtained if we observe (see
Appendix) that the infinite product can be expressed as an
infinite sum of products. Thus, (3) can be rewritten as,

d 1
PFA2- M m CW(1W)k

m=O k-O 1 - (1 - w)k+1

M --> ooC.

(6)
Replacing c with CD will yield the expression for PD.
The rate of convergence of the two expressions is

demonstrated in Tables I-ILL. The denominator of (3) is
termed 1/PFAI and the denominator of (6) is termed 1/

TABLE I

M 1 IPFA 1 1 /PFA2

4 1834.56 48742.17
6 12273.00 285367.29
8 49882.46 708222.57
10 135921.54 995148.89
16 600187.33 1081201.47
20 845701.98 1081208.40
36 1073658.99 1081208.41
100 1081208.40 1081208.41

Note: w 0.2, c 27.
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TABLE II

M 1 /PFA I 1 /PFA2

4 168263.74 412583.39
6 593708.92 956782.72
8 888429.93 1028154.34
10 991150.32 1028884.28
16 1028280.59 1028884.78
20 1028847.01 1028884.78
36 1028884.78 1028884.78
100 1028884.78 1028884.78

Note: w 0.5, c 77.

TABLE III

M 1 /PFA1 1/PFA2

4 906592.63 988952.00
6 1005238.31 1009730.95
8 1009551.85 1009732.25

10 1009725.04 1009732.25
16 1009732.25 1009732.25
20 1009732.25 1009732.25
36 1009732.25 1009732.25
100 1009732.25 1009732.25

Note: w 0.8, c - 349.

PFA2. The three tables correspond to three weights 0.2,
0.5, and 0.8. The corresponding scaling factors were
selected to yield 1/PFA 106.

Up to the least significant digit presented in the
tables, the same results were obtained with single
precision (60 bit) and double precision (120 bit) on the
CDC-CYBER 180-990/NOS as well as with double
precision (64 bit) of a VAX 750 computer. Single
precision (32 bit) on the VAX yielded convergence to
results which differed by a factor of < 10-6.

The three tables demonstrate that 1/PFA2 converges at
about one-half the number of terns M, at which 1/PFA1
converges. It may be argued that (3) involves a single M
term product, while (6) involves a sum of M products of
increasing length, the longest being an M term product.
However, what tasks the computer most is the highest
power into which (1 - w) is raised. That power is M in
(3) and (M + 1) in (6).

It is therefore recommended to use (6) rather than (3)
as the preferred expression for the false alarm probability.
For the much higher typical detection probability, both
expressions converge very rapidly.

The format of (6) has another advantage over that of
(3). It yields an expression of the limit of PFA when w =
0, which corresponds to the fixed threshold case. We
note that

lim cw(l -w)k c

W,-O 1 - (1 -w)), K + I

Using (7) in (6) we get
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limPFA l = exp(-c) (8)
W-> c c

1+ C +-+ - + *

which is the well known result for the non-CFAR case.
Replacing c with CD will yield the detection probability of
the non-CFAR, single-pulse, Rayleigh fluctuating target.

APPENDIX

The denominator of (3) has the form

D = H (1 +abm) = (1 +ab0)(1 +ab1)
m=O

(1 + ab2)(l + ab3)

Performing the multiplications we get

D = 1 + a(b0+bl'+b2+- ..)

+ a2[b0(bl+b2b + ..)

+ bl[b2+b3+b4+...) + .j..

(9)

+ b0b2(b3+ b4 + b5+ .. .) +

+ b'b2(b3+b4+b±+...)
+ blb3(b4+b5+b6+...) +

+ [* b+]

+ a4[boblb2(b3+ b4+b5+ . ) + *-']

(10)

Making use of the equality

1 + bk + b2k + b3k+ ... =
1 - bk

we get after some manipulations

D a a ab
D=1+1 -b 1- b 1-b2

a ab ab2
1 -b 1 -b2l1 -b3 (12)

which can be written as

D =1 +Z jf?jabl-k 1
'

mn 0 k=0 1 - bk±
(13)
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