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DCT. In  terms of its  application,  using CMT as the  base,  both 
transfrom  and  hybrid  coding [ 121  of  broadcast  quality  TV 
signal for  digital  transmission at  reduced  bit  rates is being 
investigated. 
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Analytic  Inversion of Fisher’s  Information  Matrix  for  Delay, 
Delay  Rate,  and  Higher  Derivatives 

NADAV  LEVANON 

Abstract-Fisher’s information  matrix for delay  (which  corresponds 
to range),  Doppler  (range rate), and  higher  derivatives was recently 
presented  by  Schultheiss  and  Weinstein [l], [2]. Its inverse,  which 
provides a lower bound  on the  error  covariance matrix, was obtained 
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numerically  by  them. An analytic  inversion is presented  here. It applies 
to the case  of one reference  signal  (single-frequency)  and one received 
signal,  delayed and contaminated  by  white  noise.  The  analytic  inversion 
provides an insight on  the increases in the  variances of delay and 
Doppler  estimations in the  presence  of  higher  derivatives.  Asymptoti- 
cally, the delay  variance  increases  linearly with the highest  derivative 
order, and  the Doppler  variance  increases  cubically. 

I.  INTRODUCTION 
Schultheiss  and  Weinstein [ 1 1 ,  [2 ]  have obtained Fisher’s 

infomation  matrix  for  the  unbiased  estimation  of  delay  and 
its  derivatives,  of  which the  first  one  corresponds  to  the  Dop- 
pler  angular  frequency.  They  chose a polynomial  representa- 
tion  of  the  delay 

D ( t ) = a o  + a 1 t + a 2 t 2  + * . . + a q t “ + ” ’ + a p t P  (1) 
in which  the  coefficients  are  related to the  delay derivatives by 

In  limiting  the  polynomial  order to p ,  one  assumes  that  the 
highest  existing  derivative is the  pth derivative. 

For  the  simple case when  the delay’  is  measured  using a 
sinusoidal  signal, a  single  receiver,  and a  noise-free  reference 
signal,  Fisher’s matrix  for  the  rearranged  coefficients  vector 

where  the  even  coefficients  matrix  is 

(:+ 1 ,  p even 
Y =( 

and  the  odd  coefficients  matrix is 

7 9 

J o  = I (Z’/:)6 (T/2)’ (T/2)Io 
= [ Jo lm,n=l . . . s  ( 7 )  

- - -... 

D by  2nf. 
ID here is phase  delay in radians. To convert to time  delay,  dividc 
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No is the  noise  spectral  energy, A is the signal  amplitude, 
and T is the  total  observation  time.  Note  that  the  expression 
preceding the  matrix  in ( 4 )  is the  ratio of twice  the signal 
energy  during  the  observation  time  to  the  noise  energy.  It is 
this  expression  that  changes  with  different  signals  or  receiving 
systems. 

The inverse  of ( 4 )  provides  a  lower  bound on the  error co- 
variance  matrix.of a.  Numerical  inversions  for  several  poly- 
nomial  orders  were  given  in [ 11 and [ 2 ] .  In the  following 
section,  we  will  outline  the  computation of an  analytic  inver- 
sion of (4), following  the  approach of Proschan [ 3 ] ,  and 
present  the  final  result. 

11. THE  INVERSE MATRIX 
We first  note  that J e  can  be  factored  as 
~e = ~ e ~ e g e  (9) 

where 

if we  choose 

xi = 2i 

and 

y j =  3 - 2j.  ( 2 0 )  

Similarly,  we  can  write 

if we  choose 

x ,  = 2m 
and and 

y n  = 1 - 272. ( 2 3 )  

Note  that  (17) is the p ,  q cofactor of the  matrix  whose 
determinant  appears  in (16) .  Hence,  the p ,  q element of the 
inverse  matrix  is  obtained by dividing (1 7 )  by  (1 6) .  Repeating 
this  for all the  elements  yields  the  inverse of ( 4 )  

Hence,  the  inverse of J e  is given by 

(Je) - l  = (Be)- '   (K")-l   (Be)- ' .  ( 1 2 )  

The inverse  of the  diagonal  matrix B e  is the inverse  of  each 
of  its  elements, so we  are  left  only  with  the  task of inverting 
K e .  

Similarly,  we  note  that 
where 

where 

with 

O ,  
m f n  [ 2 ( r + i -  l ) ] !  

ai = 
( Y  + i - l ) !  ( Y  - i ) !   (2 i  - 2 ) !  

and 
and  where 

Om On 

The  inversions of K e  and KO are  performed  using  the  Cauchy 
identities  for  determinants of "alternating  functions" [ 4 ]  

= (- 1 ) ( 1 / 2 ) r ( 4  

( 2 7 )  
with 

111. MAIN DIAGONAL TERMS 

The  terms of the  main  diagonal  are of particular  interest 
since  they  provide  a  lower  bound on the variance  of  each 
polynomial  coefficient.  As was shown  in [5] ,  a  unified  ex- 



IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND  SIGNAL PROCESSING, VOL. ASSP-31, NO. 5, OCTOBER 1983 1309 

pression  for  the Cq coefficient is given  by 

1 
2q + 1 

.- 

where 

p + q = o d d  
S =  

\P + 1,  p + q = even. 

Of special  practical  interest  are  Var so and Var iil which 
correspond t o  delay  and  Doppler,  respectively.  Setting q = 0 
and q = 1 in  (29),  we  obtain 

where 

p odd 

p + 1, p even 

and 

(33) 

where 

(34) 

When the  motion  can  be  represented  by a fixed  range,  the 
smallest  polynomial  for  an  unbiased  estimate of the  delay  is 
of  the  zero  order.  Thus,  from (31) and  (32) we obtain 

Note  that  increasing  the  polynomial  order  from  zero  to  one 
does  not  effect  the  variance $0. 

When the  motion  results  in  range  rate  (Doppler),  the smallest 
polynomial  allowing  its  estimate is  of the  first  order.  Thus, 
from  (33)  and  (34)  we  obtain 

Both  (35)  and  (36)  are  well-known  results  [6]. 

IV. ASYMPTOTIC EXPRESSIONS 
When  unbiased  estimates  of  delay  and  Doppler  are  calculated 

simultaneously  with  many higher  derivatives,  their  variances 
[(31) and  (33)]  approach  the  asymptotic  expressions 

(3  7)  

where s is related to p as in (32),  and 

where s is related to p as  in  (34). 
Equations  (37)  and  (38)  provide  an  answer to the  question 

left  open  in [ 1 ] : How  do  the  variances of delay  and  Doppler 
increase  with  the  addition  of  arbitrary large  polynomial  order? 
Equations  (37)  and  (38)  show  (asymptotically)  that  the  delay 
variance  increases  linearily  with the  polynomial  order,  and  the 
Doppler  variance  increases  cubically. 
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A Two-Parameter Class of Bessel  Weightings for 
Spectral  Analysis  or  Array  Processing-The 

Ideal  Weighting-Window  Pairs 

ALBERT  H.  NUTTALL 

Abstract-A unified theory  for array  processing in 1, 2, or 3 dimen- 
sions  is  pointed out and  illustrated  by a two-parameter  class  of Bessel 
weightings.  This class subsumes the I,-sinh  weighting-window  pair  as 
well  as the ideal  space  factor  of  van  der  Maas in  one dimension.  The 
weightings that realize the ideal  space factor in 2 and 3 dimensions  are 
generalized  functions  more singular than the delta function required  in 
1 dimension. 

I .  INTRODUCTION 
A wide  variety  of  time-domain  weightings  for  spectral  analy- 

sis,  whose  frequency-domain  windows  have  very  good  sidelobe 
behavior,  are  available  in [ 1 1, [ 2 ] .  However,  most  of  the 
weighting-window  pairs  in [ 1 ] , [ 21 have no  parameters  in  their 
design equations;  that  is,  the  windows  are  fixed  and  cannot  be 
altered, as for  example,  in  the  Hanning  and  Hamming  windows. 
A few  windows,  such as the Dolph-Chebyshev  and I,-sinh [ 31, 
[ 4 ] ,   d o  have a  single  parameter in  their design equations  that 
allows  for a tradeoff  between  the  mainlobe  width  and  the  ratio 
of mainlobe-to-peak-sidelobe.  However,  the  latter  have no 
control  over  the  rate  of  decay of the  sidelobes,  the  Dolph- 
Chebyshev  case  having no decay,  and  the Kaiser-Bessel  case  a 
6 dB/octave  decay.  It  is  obvious  that in  order to control both 
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