Multifrequency complementary phase-coded radar

signal

N.Levanon

Abstract: A multifrequency radar signal is considered. It uses M subcarriers simultaneously. The
subcarriers are phase modulated by M different sequences that constitute a complementary set.
Such a set can be constructed, for example, from the M cyclic shifts of a perfect phase-coded
sequence of length M (e.g. P4). The subcarriers are separated by the inverse of the duration of a
phase element 7, yielding orthogonal frequency division multiplexing (OFDM), well known in
communications. A single pulse of such a signal exhibits a thumbtack ambiguity function with
delay resolution of 7,/M. The power spectrum is relatively flat, with width of M/t, . The signal can
be constructed by power combining M fixed-amplitude signals. The resulting signal, however, is of
variable amplitude. The peak-to-mean envelope power ratio can be maintained below 2. A train of
complementary pulses and a weight function along the frequency axis are useful for further

sidelobe reduction.

1 Introduction

Range (delay) resolution is inversely related to the radar

signal bandwidth. The quest for higher bandwidth usually
follows shorter bit duration in digital phase modulated
signals, or wider frequency deviation in analogue
frequency modulated signals. In radio communications,
where it is advantageous to increase bit-rate without short-
ening the bit duration, one solution is the use of a
modulation technique known as orthogonal frequency
division multiplexing (OFDM). The basic idea of OFDM
is to replace transmitting serially M short modulation
symbols, each of duration ¢,, by transmitting M long
symbols, each of duration f,=Mt,, in parallel, on M
different subcarriers. In OFDM the subcarriers are sepa-
rated by 1/¢,, which ensures that the subcarrier frequencies
are orthogonal and phase continuity is maintained from
one symbol to the next. OFDM is the suggested technique
for digital audio broadcasting [1] and other applications.

Simultaneous use of several subcarriers in radar was
recently reported by Jankiraman ef al. [2]. The PANDORA
[2] FMCW radar achieves a bandwidth of 384 MHz, by
using 8 linear-FM (LFM) channels, each sweeping
48 MHz. Together with guard bands, the bandwidth totals
776 MHz. A multifrequency signal is characterised by
varying amplitude. Amplifying such a signal requires
linear power amplifiers (LPA), which are relatively ineffi-
cient. Much of Jankiraman’s paper is devoted to issues of
power combining and amplification.

A modern replacement of the analogue LFM signal is a
digital phase-coded signal, in particular, the P3 and P4
signals [3], whose phase sequences are samples from the
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phase history of a LFM signal. An analogy to the FMCW
multifrequency approach would have suggested repeating
the same phase-coded modulation sequence on all M
subcarriers. We found that lower autocorrelation sidelobs
are reached when the M sequences are different from each
other and constitute a complementary set. We will call such
a signal multifrequency complementary phase coded
(MCPC) signal. This paper describes several versions of
the MCPC signal and compares its performances to P4,
Huffman [4, 5] and Costas [6] signals.

2 MCPC based on all cyclic shifts of P4

2.1 The signal
The phase sequence of a P4 signal is described by
T

G = 7 (m =1 —(m — 1),
P4 and P3 signals exhibit ideal periodic autocorrelation,
namely zero periodic autocorrelation sidelobes. Deducing
from simultaneous transmission of LEFM pulses would have
led us to suggest repeating the same phase sequence on all
M subcarriers. However, phase-coded signals yield an
additional degree of freedom in the form of cyclic shift.
Popovic [7] has shown that all the different cyclic time
shifted versions of any sequence having an ideal periodic
autocorrelation function, form a complementary set.

A complex valued sequence X;, whose kth element is
si(k), forms a complementary set if the sum Z(p) of the
aperiodic autocorrelation function R; of all sequences from
the set is equal to zero for all nonzero time shifts p, i.e.

m=1,2,....M (1)

M-1

M_IM_1op R(0), p=0
2)=3 > ssitc+p) = 2RO p
i=0 k=0 0 ) p¢0
@

where * denotes complex conjugate, p is the (positive) time
shift, and R;(0) is the energy of the sequence X;. When the set
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has only two sequences (a complementary pair), the two
sequences (of equal length M) must have aperiodic auto-
correlation functions whose sidelobes are equal in magni-
tude but opposite in sign. The sum of the two autocorrelation
functions has a peak of 2M and a sidelobe level of zero.

In order to take advantage of this autocorrelation prop-
erty in radar signals [8], the sequences must be separated,
e.g. in time (two different pulses). With large time separa-
tion, even a small Doppler shift causes a large phase shift,
and the sequences quickly lose the property of cancelled
autocorrelation sidelobes.

The use of multiple subcarriers provides another possi-
bility of separation: frequency. We will investigate the
properties of such a signal using a simple complementary
set constituted of the five shifts of a P4 signal of length 5.
The basic phase sequence is obtained by using M=5 in
eqn. 1. It appears in the top row of Table 1. The remaining
rows are all the remaining cyclic shifts.

Following the OFDM approach, the M (=5) sequences
will be transmitted on M subcarriers, separated by f, =
1/t,, where t, is the duration of each phase element (bit).
The complex envelope of the transmitted signal is therefore

M

W, exp{j[Zn,t]ﬁ (K;:—l - n) + ()n] l
n=1
M

u(t) = Zun’m[l‘ - (m — l)tb], 0 <t=< Mtb (3)
m=1
0 , elsewhere
where
exp(j ,0<t<t¢
u ()= | P @
’ 0 , elsewhere

¢, is the mth phase element of the nth sequence, 6, is an
arbitrary phase shift added by the transmitter hardware to
each carrier (known to the receiver) and W, is the ampli-
tude weight assigned to the nth subcarrier. eqns. 3 and 4
describe the complex envelope of an M x M MCPC signal.

2.2 Comparison between M x M MCPC (M= 5)
and P4 (N=25)

Fig. 1 compares schematically a 25 chip P4 pulse (Fig. la)
and a 5x35 MCPC pulse (Fig. 1b). The P4 pulse is
constructed from N phase modulation chips, each of
duration #,. The typical autocorrelation of a P4 pulse
exhibits a narrow main lobe at zero delay, a first null at
Z., and low sidelobes extending as far as the pulse duration
Nt.. The power spectral density of P4 resembles a
sin?(nft,)/(nfi,)* function. The first null is at f=1/z, and
the spectrum peak sidelobe level is —26 dB.

The schematic description of the MCPC pulse (Fig. 15),
shows M(=5) sequences modulating M subcarriers. The
bit duration #, in each sequence was chosen to be M times
longer than f.. This will yield an autocorrelation mainlobe
width similar to a P4 pulse with M?(=25) chips. We will

Table 1: Set of five complementary phase coded
sequences

Seq. 1 0° — 144° —216° —216° — 144°
2 — 144° —216° - 216° — 144° 0°
3 —216° —216° — 144° 0° — 144°
4 —216° — 144° 0° — 144° —216°
5 — 144° 0° — 144 —216° —216°
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Fig. 1 Schematic comparison between M x M MCPC and M? element
P4
a P4
b M x M MCPC

also show that the MCPC pulse exhibits a more efficient
spectrum usage. As depicted in Fig. 1, the power spectrum
is nearly rectangular with cutoff at /'~ M/(2t1,).

The ambiguity function and its zero-Doppler cut (the
magnitude of the autocorrelation) of u(¢) depends on the
permutation of the five sequences along the five subcarriers
@f. fs, 0, —f,, —2f,). A preferred (low sidelobe RMS)
permutation results in the autocorrelation (magnitude)
shown in Fig. 2a. Note that the first null appears at #,/5.
This means that, by using five subcarriers, we have created
an autocorrelation resembling that of a single-frequency
signal that, over the same total duration, has five times as
many bits. Note also the nulls of the autocorrelation func-
tion at multiples of #, . These nulls result from the combina-
tion of the orthogonality (f, = 1/t,) and the complementary
set. It is interesting to compare the autocorrelation of the
MCPC pulse with the autocorrelation of a P4 signal of
length 25. Its magnitude is plotted in Fig. 25. The phase
sequence of a P4 signal with 25 elements uses 13 distinct
phase values. This compares with only three distinct values
in Table 1. Two other aspects to compare are the occupied
spectrum and the Doppler sensitivity. Fig. 3 displays the
corresponding power spectral densities (PSD) of the MCPC
and the P4 pulses, obtained from the Fourier transform of
their respective autocorrelation functions in Fig. 2. In
general, the MCPC signals exhibit a more narrow and flat
spectrum (of the complex envelope) extending as far as

M
fmax ~ ét—b (5)
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Fig. 2 Autocorrelation functions of 5 x 5 MCPC and 25-element P4

Identical horizontal scale (since 1, =5¢,)
a MCPC, sequence order 352 1 4
b P4
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Fig. 3 Power spectra of 5 x 5 MCPC and 25-element P4

Identical horizontal scale (since #, = 5¢,)
a MCPC, sequences order 3 52 1 4
b P4
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The bandwidth of the band-pass signal around its centre
frequency will therefore be:

BW = Yo ¥ ©)
The sensitivity to Doppler shift is described by the ambi-
guity function. The 1st and 2nd quadrants are shown in
Fig. 4 for the 5 x 5 MCPC pulse, and in Fig. 5 for the 25-
element P4 pulse. The ambiguity function of the MCPC
pulse does not exhibit the ridge seen in the ambiguity
function of the P4 pulse (also typical of LFM). Zooming
will reveal that there is no rapid increase of the sidelobe
level with small Doppler shift. The Doppler scales in both
figures are identical, extending from 0 to 12 times the
inverse of the pulse duration. The delay scales are also
identical extending over + the pulse duration.

The performances of the MCPC signal were calculated
assuming no hardware inserted phase shifts and no
frequency weighting, namely, 6,=0, W,=1, for
n=1,...,M were assumed in eqn. 3. Phase shifts other
than zero will slightly modify the spectrum and the side-
lobe patterns of the ambiguity function. The resulting
effect will be similar to that of using a different order of
the sequences. The role of frequency weighting will be
discussed in Section 5.

2.3 Comparison between M x M MCPC (M=9)
and P4 (N=25)

From a spectral-width point of view, it is more reasonable
to compare the 25-clement P4 signal with a 9 x 9 MCPC

delay/t,,

Fig. 4 Ambiguity function (1st and 2nd quadrants) of 5 x 5 MCPC pulse
Sequence order 352 1 4

Doppler * N * 1 4

-5
delay/t,

Fig. 5 Ambiguity function (Ist and 2nd quadrants) of 25 element P4
pulse

25 20715 710
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signal. The sequence order of the MCPC signal is that
order which yields the lowest RMS sidelobe level, found
by an exhaustive search (valid as long as 6,=0,
n=1,...,M). The autocorrelation (indB) of both signals
is given in Fig. 6a. It reveals a similar peak-sidelobe level
of —20dB, yet a much narrower mainlobe of the MCPC
signal. The ratio of the first delay nulls is

Toumcee _ N 25

=g =03 (7)

Thull, P4
The power spectral density of both signals is given in Fig.
6b. It explains why we consider the 25-element P4 signal to
occupy the same spectrum as a 9 x 9 MCPC signal.
Studying MCPC signals of other sizes reveals a clear
sidelobe level drop as M increases. For M < 13, an empiri-
cal relationship of the sidelobe RMS value indB is
201log(SLgpmg) >~ — (1.13M+17.7). The best found
permutations were used to obtain the relationship.
However, for M>11 the large number of permutations
(111~ 4 x 107) excludes an exhaustive search. The large
number of permutations could be exploited when many
similar radar units must coexist in physical proximity, e.g.
in automotive radar applications.

3 Peak-to-mean envelope power ratio (PMEPR)

A major drawback of the MCPC signal is its varying
envelope. If the signal generator contains a power ampli-
fier, it becomes desirable to reduce the peak-to-mean
envelope power ratio (PMEPR) as much as possible. The
orthogonality of the MCPC signal implies that, over a bit
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Fig. 6 Autocorrelation functions and power spectra of 9 x 9 MCPC and
a 25-element P4
—— MCPC (531864297
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a Autocorrelation functions
b Power spectra
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duration, one subcarrier has no effect on the others. Hence,
if each subcarrier is of unit power then the mean power of
the M subcarriers must be M. The instantancous peak
power during a bit can be at most M2, We can therefore
conclude that, in general

PMEPR < M (8)

However, we found out, numerically, that when the MCPC
is based on all the cyclic shifts of a P4 signal, and M >4,
and the sequence order is also a cyclic shift, namely

{kbe+1,... . M—1,M,1,2,...,k—1}
or{k,k—1,....2, 1, MM —1,... k+1} )
then
PMEPR < 2.015 (10)

Note that Boyd [9] has pointed out the result in eqn. 10 for
the case of a multitone symbol in which the phase
sequence (along the M frequencies) follows a P3 phase
sequence. (Boyd calls it ‘Newman phases’.)

The lower PMEPR when the order of sequences is as in
eqn. 9 is demonstrated in Figs. 7a and b, where the real
envelopes of 5 x 5 MCPC signals based on P4 are given
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Fig. 7 Real envelopes of two permutations of 5 x 5 MCPC pulse and
Huffman pulse
PMEPR = peak to mean envelope power ratio
a MCPC 3 52 1 4, PMEPR =4.37
bMCPC34512 PMEPR=1.73
¢ Huffman, seed =456, PMEPR =4.12
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for the sequence orders {35214} and {34512}, respec-
tively. The latter one meets the criteria in eqn. 9. The
corresponding PMEPRs are 4.37 and 1.73. For compar-
ison, Fig. 7c¢ presents the real envelope of a 25 element
Huffman signal, which is also of variable envelope, and
which will be discussed in Section 7.

4 Train of complementary MCPC pulses

A train of M MCPC pulses can be complementary in time
as well as in frequency. This happens when each pulse in
the train exhibits a different order of sequences such that a
set of complementary phase sequences is obtained in each
frequency. The autocorrelation sidelobes are further
reduced as demonstrated by comparing Fig. 8a to Fig.
2a. Both pertain to a 5 x5 MCPC signal. The order of
sequences in the five pulses is outlined within the drawing.
We note from Fig. 8a that the sidelobe reduction applies to
all but the sidelobes within the first bit. This should be
expected because a complementary set yields zero auto-
correlation sidelobes only for |t] > 7,.

The delay axis in Fig. 8 is limited to the duration of a
pulse (= Mt,). The autocorrelation within that delay is not
affected by the pulse interval T as long as 7'is larger then
twice the pulse width, namely 7> 2Mt,. The pulse interval
does affect the ambiguity function for nonzero Doppler.

The dramatic improvement in sidelobe reduction for
t, < |t| < Mt;, by a train of complementary MCPC pulses
invites a method for further sidelobe reduction in the delay
range of |7] <#,. In the next Section we will demonstrate
how this is achieved by applying weights along the
frequency axis.

We will postpone presenting an ambiguity functions of a
complementary train of MCPC pulses until after the
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autocorr, dB
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delay/ty,
a

autocorr, dB

delay/t,
b

Fig. 8 Autocorrelation functions of tain of five 5 x 5 MCPC pulses

The delay scale extends for the duration of one pulse only
a Without frequency weighting
b With frequency weighting, weight power =0.38
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discussion on weighting, in order to demonstrate the
combined effect.

5 Frequency weighting of a train of
complementary MCPC pulses

Frequency weighting is a well-established method for
reducing autocorrelation sidelobes in linear FM radar
signals [8]. We found out that it was not very effective in
a single MCPC pulse because it yielded meaningful side-
lobe reduction only over the limited delay range |t| <¢,,
but did not help over the larger remaining delay range of
t, < |t| < Mt,. However, once we found out that a comple-
mentary train of MCPC pulses dramatically reduces side-
lobes in that larger delay range 1, < |t] <Mt,, it became
obvious that combining complementary pulse train and
frequency weighting can reduce autocorrelation sidelobes
over the entire delay range 0 < |t| < Mt,.

In conventional constant-amplitude radar signals,
weighting is usually implemented only at the receiver, in
order not to loose the constant-amplitude property of the
transmitted signal. This is effectively a deviation from
matched filter processing and results in a small SNR
loss. In our case, the signal is already of variable amplitude
(but of fixed amplitude at each subcarrier). Hence applying
different amplitude to each subcarrier adds no difficulty.

Despite the extensive knowledge regarding weighting
windows, we limited our numerical trials to a simple
family of weighting described by

2n (n - %) *

W,,:I:ao—l—alcos—M‘—] , n=1,...M (1)
Note that setting a, =0.53836, a; = 0.46164 and « =0.5 is
equivalent to adding a Hamming window at the receiver
side. We found out that values of o slightly different from
0.5 yielded smaller peak sidelobes. The weight W, now
multiplies the signal of the nth subcarrier as noted in eqn.
3. To the M =5 MCPC complementary pulse train used in
Fig. 8a, we added weighting according to eqn. 11. The
resulting magnitude of the autocorrelation function is
plotted in Fig. 8b.

The ambiguity function of a complementary train of M
MCPC pulses, with or without weighting, depends on the
pulse interval 7. The partial ambiguity function plotted in
Fig. 9 was obtained for an arbitrary case in which the pulse
interval was four times the MCPC pulse duration, namely

0
-5 delay/ty,
Fig. 9 Ambiguity function of train of five 5 x5 MCPC pulses with
frequency weighting
The delay scale extends for the duration of + one pulse only
Sequence order 3 5 2 1 4; weight power=0.38
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T=4Mt, and the weighting was according to eqn. 11.
Because of the periodicity in time, the response in Doppler
exhibits peaks at multiples of v=1/T=0.25/Mt,,, the first
of which is seen in Fig. 9.

6 MCPC based on two-valued complementary
set

The P4 phase sequence used so far to construct the MCPC
complementary set is a polyphase code. There are two-
valued phase sequences that also exhibit perfect periodic
autocorrelation, and can serve to construct a complemen-
tary set. One such alternative is the sequences described by
Golomb [10]. One example of such a sequence is based on
Barker code of length 7 [+ ++4 — — + —], in which the
two phase values are not 0 and 180° but 0 and
138.59°(=arccos(—3/4)). Codes of this type exist for
lengths 3, 7, 11, 15, 19, 23, 31, 35, 43, 47, 59,.... For a
23 x 23 MCPC single pulse, based on all the cyclic shifts
of the corresponding two-valued perfect sequence, the
autocorrelation (magnitude) and the ambiguity function
are presented in Figs. 10a and 11, respectively. The RMS
sidelobe value of the two-valued signal is usually 15%
higher than for a polyphase signal of the same size. Adding
frequency weight to the above signal alters the sidelobes,
mostly within the first bit, as demonstrated in Fig. 12,
which zooms on the first two bits.

It is also interesting to compare the autocorrelation of
the two-valued signal with one in which the phase values
were changed to 0 and 180° (not a complementary set any
more, but easier to implement). Degradation in RMS value
by about 25% (relative to the ideal two-valued code) is
typical. As already pointed out, in all MCPC signals based
on complementary sets the autocorrelation is identically
zero at multiples of ¢,. This property is lost in a non-

autocorr, dB

autocorr, dB

0 2 4 6 8 10
b delay/ty,

Fig. 10 Autocorrelation functions of 23 x 23 MCPC pulse based on
Golomb s 2-valued sequence and 13 x 13 MCPC pulse based on Ipatov’s
binary sequence

12 13

a Golomb, weight power =0

Sequence order 9 53 16237821614 1514172022101328 19 11 12
b Ipatov, weight power ==0.12

Sequence order 5123 1108114913726
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Fig. 11 Ambiguity function of 23 x 23 MCPC pulse based on Golomb's
2-valued sequence

0 and 156.443°
Sequence order 953 1623 78216141514172022101328 191112
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Fig. 12  Partial autocorrelation function (0 <t <2t,) of 23 x 23 MCPC
pulse

0 and 156.443°

Sequence order 95316237 18216141514172022101328 191112
a With frequency weighting, weight power =0.33

b Without frequency weighting

complementary set, and is one reason for the higher side-
lobe RMS value.

Implementing two-valued sequences is especially simple
if the two are binary values (— 1, + 1). There are only few
square or nearly-square binary complementary sets. Some
examples are listed in Table 2 [11].

It is interesting to note the dramatically different ambi-
guity function of a train of four complementary MCPC
pulses based on the 4 x 4 complementary sets () and (c) in
Table 2. The ambiguity function in Fig. 134, which
corresponds to a frequency-weighted pulse-train based on
set (b), exhibits perfect zero sidelobes for all but the first
bit, for zero Doppler. However, the sidelobes build up
rapidly with Doppler. The ambiguity function in Fig. 135,
which corresponds to a pulse train based on set (c),
exhibits low (but not zero) sidelobes for all delays and
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Table 2: Complementary binary sets

(a) (b) (c) (d)

+++ + 4+ + ++ -+ + - == =
- ++ + =+ = +-++ —++ -+
+ -+ ++ - = -+ ++ + - - -+
+ 4+ — + - —+ +++ — e

=z

e

=]
©
LT

06 &
0N
04 . Eé
02 "
0
0.25

0.2 ]
0.15

Doppler * M * t,,

0.1

1 0
delayft,

b b

Fig. 13  Ambiguity functions of train of four 4 x 4 MCPC binary pulses

a According to Table 2b, weight power = 0.13, sequence order 1 4 3 2
b According to Table 2¢, weight power =0.33, sequence order 4 1 3 2

; & 0
10 delay/t,

Fig. 14  Ambiguity function of 13 x 13 MCPC pulse based on Ipatov’s

binary sequence

Weight power =0.12
Sequence order 5123 1108114913726
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for relatively wide Doppler width. Note that set (¢) was
constructed from all the cyclic shifts of a Barker code of
length 4, which has an ideal periodic autocorrelation while
set (b) is a Hadamard matrix.

There is still another type of MCPC signal that would
allow transmitting binary values (—1,+ 1). It requires,
however, a slightly mismatched receiver. This type of
MCPC signals is based on the sequences suggested
by Ipatov [12]. They yield perfect periodic cross-correla-
tion with a slightly mismatched reference sequence. An
example is the length 13 transmitted sequence
[fT1111~-1—-111—11 —1 1] which yields perfect
periodic cross-cotrelation with the reference sequence
(1111 -15-1511—-151-151].

A frequency weighted 13 x 13 MCPC signal based on
all the cyclic shift of the Ipatov signal outlined above, and
ordered in one of 13! possible permutations,.yielded the
cross-correlation (magnitude) and delay-Doppler response

_ presented in Figs. 106 and 14, respectively.

7 Comparison with Huffman coded signals

The variable amplitude of the MCPC signal invites
comparison with Huffman-coded signals {4, 5]. Huffman
signals are constructed from N elements of width ¢., each
one modulated in amplitude as well as in phase. The result
is nearly ideal autocorrelation (zero sidelobes, except for
two small peaks at the edges), which implies nearly perfect
sin? (nft,)/(nft.)? power spectrum. The length N of the code
determines the phase of the elements. The amplitude
sequence is determined by the two sidelobe peaks, and
by the zero pattern of the z transform of the Huffman
sequence. For a given sidelobe peak level there are 2V ~!
different combinations. The zero pattern combination does
not affect the autocorrelation (hence zero-Doppler cut of
the ambiguity function), but does affect the ambiguity
function at Doppler shifts other than zero and also the
real envelope of the signal.

The same mainlobe width as an M x M MCPC signal
will be obtained from an N =M? element Huffman code.
Examples of the real envelope and ambiguity function of a
25-element Huffman signal are given in Figs. 7¢ and 15,
respectively. By definition, Huffman signals can be
designed with much lower autocorrelation sidelobes than
MCPC, but because of their perfect sin?(rnft,)/(nft,)* power
spectrum shape, their spectrum use is less efficient. But the
major difference between Huffman and MCPC signals is
with regard to implementation. A Huffman signal has to be

!

X
i
I

5

0
5-10 ©
delay/t,

.25 -20 -1
Fig. 15 Ambiguity function of 25-element Huffinan pulse
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generated as one entity and then amplified using linear
amplifiers. On the other hand, an MCPC signal can be
generated by passive power combination of M different
signals, each one of constant amplitude.

8 Comparison with Costas frequency coding

Costas signals [6] achieve pulse compression by intrapulse
frequency hopping. During any one of M code elements of
duration #,, only one of M frequencies is used, with no
repetitions. The frequencies are separated by 1/¢,. A Costas
signal is the only other coded signal that achieves nearly
rectangular spectrum, as does the MCPC signal, and
Costas signals achieve that spectral efficiency while main-
taining constant envelope. The first autocorrelation null of
Costas signal is at #,/M, like in MCPC. The autocorrelation
sidelobe RMS level in Costas signals is generally higher
than in equally long MCPC. One example of the ambiguity
function of a S-element Costas signal is given in Fig. 16.

Another way to compare between Costas signals and
MCPC is to note that in order to transmit energy of
E=PM,, a Costas signal requires a transmitter of power
P, hoping over M frequencies, and using each frequency
only for the duration of one #,. On the other hand, an
MCPC signal uses all the frequencies, all the time, by
power combining M fixed-amplitude signals each with
power P/M.

6
Doppler * M *t, 4
-5 delay/t,,

Fig. 16  Ambiguity function of 5-element Costas pulse
Sequence order 352 14

P50 25

i5 20
s 0 5 10

delay/t,,

o0 -15 -10

Fig. 17 Cross-ambiguity function between two different permutations of
a 23 x 23 MCPC pulse (based on Golomb's 2-valued sequences)
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It is interesting to note that in the 5 x 5 MCPC signal
described in Table 1, in the permutation with lowest side-
lobes [3 5 2 1 4], isolating the 0° phase elements creates a
Costas signal.

9 Cross-ambiguity function between two
different M x M MCPC signals

For any Mx M MCPC signal there are M! different
permutations of ordering the M sequences along the M
subcarriers. The many permutations could allow nearly
interference-free operation of several MCPC radar instru-
ments in physical proximity. This could be useful in
automotive radar applications. When a receiver is matched
to one M x M MCPC signal, and a different M x M MCPC
signal is received with delay and frequency offset (due to
different oscillator frequency or Doppler), the output of the
receiver as function of time-shift and frequency-shift is
called the cross-ambiguity function. The desired property
of cross-ambiguity is low peaks everywhere. Fig. 17
presents an example of the cross-ambiguity function
between the 23 x 23 MCPC signals (based on Golomb’s
2-value signal used in Fig. 11) and another permutation of
it, selected randomly. Note that no coincidence (the same
number at the same location) between the two orders
guarantees a null at the origin of the cross-ambiguity
function.

10 Conclusions

The MCPC signal is a new multifrequency radar signal
with several advantages over known radar signals. As P3
and P4 signals, MCPC is a digitally phase modulated
signal, but unlike P3 and P4 signals, MCPC exhibits a
thumbtack ambiguity function and requires fewer phase
values. Like Costas signal, it utilises many subcarriers, but
unlike Costas it utilizes all the frequencies all the time.
MCPC main drawback is its variable real envelope.
However, the MCPC signal can be generated by power
combining several fixed-envelope signals. This implemen-
tation option is not available for a Huffman coded signal,
which is another signal with variable real envelope.

While MCPC is essentially a pulse signal, it inherits its
favourable a-periodic autocorrelation from the periodic
autocorrelation of the signal it is based on. Hence, the
wealth of knowledge on signals with perfect periodic
autocorrelation can be utilised for an aperiodic signal.
Among signals with perfect periodic autocorrelation, we
can find long two-valued phase coded signals, and
mismatched binary signals, which are easier to implement
than polyphase signals.

Being a multifrequency signal, MCPC yields easily to
frequency weighting — useful for autocorrelation sidelobe
reduction. Further sidelobes reduction can be reached by
using a train of MCPC pulses, if designed to be comple-
mentary both along each pulse and along each frequency.

Finally, an M x M MCPC signal has M! different permu-
tations. The cross-ambiguity between any pair exhibits
relatively low peaks, which suggests low mutual interfer-
ence between nearby radar instruments.
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