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Ordered statistics (OS) constant false alarm rate CFAR is 

relatively immune to the presence of interfering targets among the 

reference cells used to determined the average background. OS 
CFAR performance in a multitarget environment was previously 

studied by simulation. Here we obtain analytic expressions for the 

added detection loss, assuming strong interfering targets. The real 

target is assumed to be a Rayleigh fluctuating target. Numerical 
examples are included. 
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Ordered statistics (OS) constant false alarm rate 
(CFAR) algorithm, introduced by Rohling [ I ] ,  is a CFAR 
technique with special immunity to interfering targets. 
CFAR usually suffers some detection loss due to the 
adaptive threshold concept. Furthermore, the presence of 
strong returns among the cells used to determine the 
background noise or clutter (reference cells), results in  an 
increase in the threshold, and therefore an increase in the 
required signal strength of the desired target. This is in  
effect an additional detection loss. In some CFAR 
methods, the presence of a strong return among the 
reference cells can cause a drastic reduction in the 
probability of detection. OS CFAR is a detection 
technique in which the threshold is just a scalar times one 
of the ranked reference cells. This concept provides 
inherent protection against a drastic drop in performance 
in the presence of interfering targets. In OS CFAR 
interfering targets cause only gradual detection loss. This 
loss can be analytically calculated when the interfering 
targets yield very strong returns, and when the desired 
target is a Rayleigh fluctuating one. 

II. OS CFAR PERFORMANCE 

Without loss of generality we normalize the signal in 
a reference cell with respect to the noise-plus-clutter rms 
value. The normalized cell input to the CFAR processor 
is the random variable z .  There are M reference cells. In 
OS CFAR the reference cells are ranked according to 
their input level 

z 1 I z 2  ~ . . . I z , I . . . I i K I . . . ~ z ~ .  ( 1 )  

The variable K is the rank of the cell whose input is 
selected to determine the threshold (representative rank). 
The threshold level Z, is obtained by multiplying the 
input from the Kth ranked cell by a scaling factor cx 

z, = (YzK. (2) 

The factor cx provides the mechanism by which the 

It can be shown [ I ]  that when z is a random variable 
false alarm probability can be controlled. 

with a probability density function (PDF) p ( z )  and a 
distribution function P ( z ) ,  then the Kth ranked sample 
(out of a total of M samples) has a PDF 

For a Rayleigh clutter-plus-noise, and a square-law 
envelope detector, p ( z )  and P ( z )  are given by 

p ( z )  = exp(-z);  P ( z )  = 1 - exp(-z).  (4) 

Using (4) in (3) we get the PDF of the Kth ranked 
sample 
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The probability of a noise-plus-clutter input from the 
cell-under-test, crossing a threshold Z,, is 

P(z 2 ZTIZT) lzI exp( -z) dz = exp( - Z T ) .  (6) 

The threshold ZT is a function of the random variable 
zK (2). Thus, the probability of false alarm, (PFA) will be 
given by averaging (6), with ZT expressed as function of 
zK, over all values of zK 

(7) 

P F A  = K(!) / :exp[-z(a+M-K+ l ) ]  

[ l  - exp( -z)IK- 'dz.  (8) 

For an integer a ,  (8) becomes 

M (a  + M - K)! (K - l ) !  
= K ( K )  (a + M ) !  (9) 

For a noninteger a the factorial should be replaced with 
the corresponding Gamma function. 

We can conclude that for a Rayleigh noise-plus- 
clutter, OS-CFAR yields a false alarm probability which 
is a function of the number of reference cells M ,  the rank 
of the representative cell K, and the scaling factor a.  

Reference [ 11 contains a table which lists the required 
a to obtain P F A  = 
From that table we extracted the relationship between a 
and K for M = 16 (see Table I ) .  

For the detection probability P, of a target return in 
the cell-under-test, we assume a fluctuating target with a 
Rayleigh amplitude PDF, and an average signal-to-noise 
ratio (m). For such a target, PD as a function of the 
scaling factor a is given by the same expression as P F A ,  

but with a replaced by an, where 

with M and K as parameters. 

(10) 
a 

a D  = 
1 + S N R  

We therefore get 

M (aD + M - K ) !  ( K  - I ) !  
p D  = '(K) (an + M ) !  

The triple relationship between P,, P,,, and SNR is 
hidden in (9)-( 1 1). The average SNR cannot be easily 

pulled out. However, a simpler relationships can be 
obtained by using Stirling's formula. We first note that 
(9) can be written as 

( a  + M - K ) !  M !  
PFA = ( a  + M ) !  ( M  - K)!  

(12) 

Equation (1 1) can also be rewritten in the above form. 
We now define the function 

( a  + M - K ) !  
( a  + M ) !  

f ( a , M , K )  = In 

Using Stirling's formula 

1 
In(n!) = '/2 l n (21~)  + ( n  + 5'2) In(n) - n + ~ 

12n 

(13) can be rewritten as 

f ( a , M , K )  -- ( a + M - K +  5'2) I n ( a + M - K )  

(14) 

- ( a + M +  1/2)  I n ( a + M )  

+ + K. 
12(a + M - K ) ( a  + M )  (15) 

K 

Equation (15) can accept a noninteger a as well 
Using (13) in (12) we can write 

In P F A  = f ( a , M ,  K)  - f(O,M, K ) .  (16) 

Similarly we can write 

In PD = f ( a D , M , K )  - f (O,M,K).  (17) 

Equations (16) and (17) together with (10) provide a 
~ somewhat simpler relationship between PFA,  P,, and 
SNR. 

performance without interfering targets. We demonstrate 
the calculations on a specific case where M = 16, 
K = 10, P,, = l o p 6 ,  and P, = 0.5. 

f ( a , M =  16,K= 10) for all relevant as. (For 0 5 a 5 2 ,  in 
steps of 0.01; and for 2 < a 5 2 0 0  in steps of 0.1). Using 
that table and (16) we get 

In P F A  + f(O,M,K) = , f ( a , M , K )  + a = 32.9. 

Similarly 

In P, + ,f(O,M,K) = f ( a r , , M , K )  -+ a,] = 0.78. 

We now use these three equations to obtain OS-CFAR 

For the given M and K we first construct a table of 

Using a and an in (10) will yield SNR = 41.21 
( =  16.15 dB). 

A comparison with cell-averaging CFAR (CA-CFAR) 
can be obtained, if we use Nitzberg's [2]  results for CA- 
CFAR and Rayleigh targets 

TABLE I 
Scaling Factor 01 As Function Of K ( M  = 16; P,,, = I O - h )  

1s 16 K =  2 3 4 5 6 7 8 9 10 I I  12 13 I4 

a = 15476 1483 443 207 120 79.4 56.6 42.4 32.9 26.1 20.9 16.9 13.7 10.9 8.3 

LEVANON: INTERFERING TARGET DETECTION LOSS 679 



Using the same values of PFA,  P D ,  and M ,  in (18) 
yielded, for CA-CFAR, an SNR = 29.97 (= 14.77 dB). 
Hence, in this case, OS-CFAR suffers an additional loss 
of 1.38 dB. Choosing a higher value of K (which effects 
OS-CFAR only) reduces the loss slightly. 

The non-CFAR SNR for a Rayleigh fluctuating target 
is given by 

(The subscript x is assigned because (19) can be obtained 
from CA-CFAR when M = E.) 

For the same detection and false alarm probabilities 
as above, the required non-CFAR SNR is 18.93 
(=  12.77 dB). We can conclude that for this particular 
example CA-CFAR exhibits a CFAR loss of 2 dB, and 
OS-CFAR has a CFAR loss of 3.38 dB. 

interfering targets, the adaptive threshold is effectively 
deduced from M - J reference cells. 

Step 3): 

- (Y 
SNR = - - 1 

(YD 

Step 3) results the required average SNR in the cell- 
under-test. 

threshold, can also be calculated, using Step 4). 
The actual higher PFA obtained because of the higher 

/ Step 4):  

In PFA = f ( a , M  - J ,  K )  - f ( 0 , M  - J ,  K ) .  (23) 

It should be emphasized again that the entire analysis 
is valid only if the target in the cell-under-test is a 
fluctuating target with a Rayleigh amplitude PDF. 

The results of calculating the additional CFAR loss in 
OS-CFAR, caused by interfering targets, are presented in 
Table 11. 

TABLE I1 
Additional OS-CFAR Loss Caused By J Interfering Targets 

( M  = 16, K = 10, a = 32.9, P, = 0.5) 

I l l .  OS-CFAR PERFORMANCE WITH INTERFERING 
TARGETS 

Additional 
CFAR loss [dB] 

~ 

J P F A  SNR [dB] 

In the presence of interfering target returns in the 
reference cells, OS-CFAR obviously performs better than 
CA-CFAR, since it practically ignores the top ranking 
reference cells. The effect of interfering targets on OS- 
CFAR detection probability can be easily evaluated if we 
accept the following argument. A strong, unexpected 
target return in one of the M reference cells, effectively 
reduces the number of reference cells to M - 1. The 
representative rank K and the scaling factor (Y remain 
unchanged. The threshold set by the Kth ranking cell out 
of M - 1 cells (and the original a) is higher than a 
threshold set by the Kth ranking cell out of M cells. A 
higher threshold implies lower P ,  and therefore 
additional CFAR loss. The higher threshold also results in 
(unasked for) lower PFA.  

Calculating the additional CFAR loss due to J 
interfering targets, involves the following procedure. 

Step 1) :  

In PFAnom + f ( O , M , K )  = f ( a , M , K )  + a.  (20) 

Step 1)  determines the nominal (Y selected with the 
assumption that there is no interfering targets and all M 
reference cells have the same input statistics. 

Step 2):  

InP,,,, + f ( O , M - J , K )  = f ( a , , M - J , K ) + c ; u D .  

(21) 

Step 2) determines the 
nominal P D .  Since J cells have strong returns from 

that would have yielded the 

0 1.00 10-6 16.15 
1 4.70 10-7 16.63 
2 1.98 IO- '  17.17 
3 7.19 17.78 
4 2.12 10-8 18.48 
5 4.54 10-9 19.56 
6 5.35 10-10 20.66 

0 
0.48 
1.02 
1.63 
2.33 
3.41 
4.51 

The last row in the table was calculated using the fact 
that 

f ( O , K , K )  = - In(K!). (24) 

The example summarized in Table 11, shows that as 
long as the number of interfering targets is smaller than 
or equal to M - K ,  OS CFAR maintains its performance 
with only a small additional CFAR loss. No limit was set 
on the strength of the interfering targets. As a matter of 
fact they were assumed to be very strong, so that they 
rank their respective cells above any reference cell with 
clutter-plus-noise return. If weak interfering targets are 
included the additional CFAR loss in Table I1 becomes an 
upper limit. 

is presented in Fig. 1. This example applies to a PFA = 

reference cells, and a representative rank K = 10 (the 
required (Y is 23.8). The three solid curves represent the 
OS CFAR performance in the presence of J = 0, 2, and 
4 strong interfering targets. The broken curve represents 
the performance of a non-CFAR detector, as given by 
(19). Simulation results, performed on several points 

Another example, extended over the full range of PD 

The OS CFAR was obtained with M = 16 
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Fig. 1. Effect of J interfering targets on OS CFAR performances. 

along the J = 0, 2,  and 4 curves, confirmed the analytic 
results by yielding the calculated P ,  k 0.01. 

Simulation results of OS CFAR performance in the 
presence of two interfering targets, M = 17 and P,, = 

appear also in [3, Fig. 91. The representative rank 

,31 

K is not indicated. The results in [3] require between 2.5 
to 3 dB higher SNR than our results. They could be 
duplicated with M = 17, K = 5 ,  and ci = 134.4. A 
choice of such a low K ,  while allowing many interfering 
targets, yield low performance (by about 3 dB) in normal 
operation. 
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