
Modified Costas Signal

NADAV LEVANON, Fellow, IEEE

ELI MOZESON
Tel Aviv University
Israel

A modification to the Costas signal is suggested. It involves

an increase of the frequency separation ¢f beyond the inverse

of the subpulse duration tb , combined with adding linear FM

(LFM) with bandwidth B, in each subpulse. Specific relationships

between ¢f and B will prevent autocorrelation grating lobes, that

would normally appear when tb¢f > 1.
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I. INTRODUCTION

A Costas array [1] is an N £N binary array,
filled with N “ones” and N(N ¡1) “zeros.” There
is exactly one “1” in each row and in each column.
The two-dimensional discrete autocorrelation function
(ACF) of the array should exhibit only “1” and “0”
values, except at the origin where the autocorrelation
value is N. Construction algorithms for Costas arrays
appear in [2].
In a Costas signal the N rows of the array

represent N frequencies spaced ¢f apart, and the N
columns represent N contiguous subpulses (“bits”),
each of duration tb. A 1 in the (i,j) element of the
array indicates that during the jth time interval the
ith frequency is transmitted. A Costas signal dictates
a specific relationship between the frequency spacing
and the bit duration

¢f =
1
tb
: (1)

This crucial relationship results in orthogonality
between the different frequencies, when the
integration time is equal to tb. Due to the
orthagonality, the ACF of the complex envelope of
the Costas signal exhibits nulls at all multiples of
tb. It will also result in nulls at all but N(N +1)+1
grid points of the ambiguity function (AF), when
the grid spacings are ¢f and tb. (In addition to the
origin, where the AF value is 1, at each delay ntb,
n=§1,§2, : : : ,§(N ¡ 1) there are, respectively,
N ¡ jnj Doppler gird points with non-zero AF value.
Namely, there are 2[1+2+ ¢ ¢ ¢+(N ¡ 1)] =N(N +1)
grid points with AF value of exactly 1=N.) The pulse
compression ratio of a Costas signal is N2. Namely,
the first ACF null is found at ¿ = T=N2 = tb=N, where
T is the total pulse duration.
Lower frequency spacing (¢f < 1=tb) degrades

the delay resolution. The ACF mainlobe widens and
the ACF nulls disappear. Higher frequency spacing
(¢f > 1=tb) narrows the ACF mainlobe (because
the signal bandwidth has increased) but results in
additional high ACF peaks within the delay interval
¡tb < ¿ < tb, known as “grating lobes.” We show later
(see (7)) that when

¢f = a=tb, a > 1 (2)

the grating lobe(s) appear at

¿g =§g
tb
a
, g = 1,2, : : : ,bac (3)

where bac indicates the largest integer smaller than a.
The AF and ACF of a Costas signal in which N = 8
and ¢f = 5=tb are shown in Figs. 1 and 2. The grating
lobes (four on each side of the mainlobe) are clearly
evident in both figures.
The frequency evolution of the signal is plotted in

Fig. 3. The bandwidth, normalized with respect to the
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Fig. 1. AF of Costas signal with N = 8, ¢f = 5=tb, (zoom on j¿ j · 2tb = T=4).

Fig. 2. ACF (dB) of Costas signal with N = 8, ¢f = 5=tb .

Fig. 3. Frequency evolution of Costas signal with N = 8, ¢f = 5=tb.

entire signal duration T, is given by

T

·
(fmax)¡fmin)+

1
tb

¸
=N(N ¡ 1)tb¢f+N = 8 ¢ 7 ¢ 5+8 = 288:

(4)

This product is the time-bandwidth product (TBW)
of the signal, which is approximately its compression
ratio. Note that the TBW (= 288), achieved because
of the larger frequency spacing, is much higher than
the TBW (= 64) of a regular Costas signal of length
8. The penalty is the grating lobes. The next section

shows how the grating lobes can be nullified while
maintaining the large frequency spacing, hence the
large bandwidth.

II. ADDING INTRABIT LFM NULLIFIES THE GRATING
LOBES

The problem of grating lobes is encountered
in a popular radar signal known as a train of
stepped-frequency pulses. In that signal large overall
bandwidth is achieved gradually by frequency
stepping unmodulated pulses separated in time. In
stepped-frequency train of unmodulated pulses,
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Fig. 4. ACF of a train of 8 stepped-frequency pulses (Tr=tb = 3, tb¢f = 5). Costas frequency order: 1 8 3 6 2 7 5 4. Top: tbB = 0.
Bottom: tbB = 12:5.

ACF grating lobes appear when the product of the
pulsewidth times the frequency step exceeds one.
Replacing the fixed-frequency pulses with linear FM
(LFM) pulses [3] was used to attenuate grating lobes
(as well as sidelobes). In a recent paper [4] an analytic
expression of the AF of such a stepped-frequency
train of N LFM pulses was derived for delay ¿ within
the individual pulse duration, assigned the symbol
tb. The AF expression is valid as long as the pulse
repetition interval Tr obeys Tr > 2tb. The zero-Doppler
cut of the AF, which is the magnitude of the ACF,
within the mainlobe area (j¿ j · tb), turns out to be a
product of two expressions¯̄̄̄

R

µ
¿

tb

¶¯̄̄̄
=
¯̄̄̄
R1

µ
¿

tb

¶¯̄̄̄ ¯̄̄̄
R2

µ
¿

tb

¶¯̄̄̄
,

¯̄̄̄
¿

tb

¯̄̄̄
· 1: (5)

The first is due to a single LFM pulse with bandwidth
B, ¯̄̄̄

R1

µ
¿

tb

¶¯̄̄̄
=
¯̄̄̄µ
1¡

¯̄̄̄
¿

tb

¯̄̄̄¶
sinc

·
TB

¿

tb

µ
1¡

¯̄̄̄
¿

tb

¯̄̄̄¶¸¯̄̄̄
,¯̄̄̄

¿

tb

¯̄̄̄
· 1: (6)

The second term describes the grating lobes,

¯̄̄̄
R2

µ
¿

tb

¶¯̄̄̄
=

¯̄̄̄
¯̄̄̄ sin

µ
N¼tb¢f

¿

tb

¶
N sin

µ
¼tb¢f

¿

tb

¶
¯̄̄̄
¯̄̄̄ , ¯̄̄̄

¿

tb

¯̄̄̄
· 1: (7)

Clearly jR2(¿=tb)j exhibits peaks (mainlobe and
grating lobes) at

¿lobes
tb

=
g

tb¢f
, g = 0,§1,§2, : : : ,btb¢fc, j¿ j< tb:

(8)

TABLE I
Examples of Valid Cases

m n tb¢f tbB B=¢f

1 0 2 4 2
1 1 3 4.5 1.5
2 2 3 9 3
2 3 5 12.5 2.5
3 3 3 13.5 4.5
3 4 4 16 4
4 4 3 18 6
4 5 3.667 20.1667 5.5
5 6 3.5 24.5 7
4 7 9 40.5 4.5

Nullifying the grating lobes is based on requiring that
the nulls of jR1(¿=tb)j coincide with the grating lobes
of jR2(¿=tb)j. In [4] that requirement was shown to
imply the following relationships

tb¢f =
4m¡ n
2m¡ n (9)

tbB =
(4m¡ n)2
2(2m¡ n) (10)

where m and n are integers. Some examples, in which
all the grating lobes are nullified, are given in Table I.
The ACF expression in (5) is independent of the

order in which the pulses are arranged in time. Hence,
arranging the pulses in a Costas sequence maintains
the nullifying. Equation (5) is also independent
of the pulse repetition interval Tr, as long as it is
larger than twice the pulse duration, namely Tr > 2tb.
An example of the ACF of a train of 8 separated
stepped-frequency pulses, with and without LFM, is
given in Fig. 4. The delay axis extends as far as the
first recurrent lobe, in order to show the significant
difference between the ACF mainlobe area and the
recurrent lobe area.
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Fig. 5. Alignment of signal and reference pulses when
calculating: (a) mainlobe area of ACF, (b) first ACF recurrent lobe

area.

Fig. 5 demonstrates schematically the different
alignments of the received and reference pulses
yielding the mainlobe area of the ACF (pair a),
and yielding the first ACF recurrent lobe (pair b).
Regarding the ACF mainlobe area we can write

R(¿ ) =
NX
p=1

Rupup(¿), 0· ¿ · tb (11)

where

Rupup(¿) =
Z tb

0
up(t)u

¤
p(t+ ¿)dt, 0· ¿ · tb:

(12)

The exact expression of ACF outlined in (11) was
given in (5), (6), and (7).
When calculating the first recurrent lobe area of

the ACF, cross terms are involved

R(¿) =
NX
p=2

Rupup¡1 (¿): (13)

Because the complex envelopes up(t) of different
pulses have different center frequencies, the spectral
overlap is relatively small, yielding ACF recurrent
lobes that are considerably lower than the mainlobe.
In addition to showing the lower recurrent lobe, Fig.
4 also shows the disappearance of the grating lobes
within the mainlobe area (j¿ j · tb), when LFM with a
specific tbB product was added.

III. CONVERTING THE TRAIN OF SEPARATED
PULSES INTO CONTIGUOUS SUBPULSES

Converting the train of separated pulses into
contiguous subpulses (Tr = tb) changes the ACF

Fig. 6. Alignment of signal and reference Costas subpulses when
calculating: (a) first bit area of the ACF, (b) second bit area.

expression. The new alignment of pulses (now
subpulses) is demonstrated in Fig. 6. The changes
in the ACF over j¿ j · tb (where the grating lobes
are found) are additional terms due to the cross
correlation between adjacent subpulses,

R(¿ ) =
NX
p=1

Rupup(¿) +
NX
p=2

Rupup¡1 (¿), 0· ¿ · tb:

(14)

At higher delays (tb < j¿ j) only cross terms are found
in the ACF.
Note that the dominant contribution to the ACF in

(14) is the first sum. Exactly the same sum was found
when the pulses were separated, and its expression
was given in (5)—(7). That first sum may exhibit ACF
grating lobes (without LFM), or they may be nullified
if the proper LFM is added. That sum is not affected
by the polarity of the LFM slope of the individual
subpulses.
The additional sum of cross terms does depend

on the polarity of the LFM slope of the individual
subpulses. When the slope polarity is the same in all
subpulses, the cross terms involving adjacent bits, and
for positive delays ¿ < tb, were found to be

jRupup¡1 (¿ )j=

¯̄̄̄
¯̄̄̄sin

·
¼tb

µ
(kp¡ kp¡1)¢f+B

¿ ¡ tb
tb

¶
¿

tb

¸
¼tb

µ
(kp¡ kp¡1)¢f+B

¿ ¡ tb
tb

¶
¯̄̄̄
¯̄̄̄ ,

0· ¿ · tb (15)

where kp is an integer and kp¢f is the carrier
frequency of the pth subpulse.
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Fig. 7. ACF of train of 8 stepped-frequency pulses, Costas order: 1 8 3 6 2 7 5 4, (tb¢f = 3). Top: Tr=tb = 3, tbB = 0.
Middle: Tr=tb = 3, tbB = 13:5. Bottom: Tr=tb = 1, tbB = 13:5.

In order to check if the nullifying holds we
should be interested in the value of (15) at the
position of the grating lobes, namely at ¿ = r=¢f,
where r is an integer smaller than tb¢f. Since r is
an integer and kp¡ kp¡1 is an integer, (15) can be
reduced to

¯̄̄̄
Rupup¡1

µ
r

¢f

¶¯̄̄̄
=

¯̄̄̄
¯̄̄̄ sin

·
¼Br

¢f

µ
r

tb¢f
¡ 1
¶¸

¼tb

·
(kp¡ kp¡1)¢f+B

r

tb¢f
¡B

¸
¯̄̄̄
¯̄̄̄ :

(16)

The numerator of (16) is zero if and only if (IFF) the
argument of the sine function is an integer multiple of
¼. Using the values of tbB and tb¢f that were given
in (9) and (10) gives the argument of the sine function
(after division by ¼) as

r

2
[r(2m¡n)¡ 4m+ n] =m(r¡ 2)r¡ n(r¡ 1)r

2
(17)

which is always integer since r(r¡1) is even for all r.
Thus the numerator of (16) will be zero whenever tbB
and tb¢f nullify the original grating lobes. The only
case where the entire fraction in (16) will not equal
zero is when the denominator is also zero, resulting in

sin(0)=0. Thus if

(kp¡ kp¡1)+
B

¢f

µ
r

tb¢f
¡ 1
¶

= (kp¡ kp¡1)+
4m¡ n
2

·
r

4m¡m (2m¡ n)¡1
¸

= (kp¡ kp¡1)+m(r¡ 2)¡
n(r¡1)
2

= 0 (18)

for some r, m, n, and (kp¡ kp¡1), the corresponding
rth grating lobe will not be nullified. For the Costas
sequence 1 8 3 6 2 7 5 4, out of all the cases in
Table I, only three will loose some or all the nulls.
For example in the case m= 3, n= 3, k4¡ k3 =
6¡ 3 = 3, the r = 1 null will be lost. This example
is demonstrated in Fig. 7, which plots the ACF of the
first bit.
For the top part of Fig. 7 the pulses are separated,

and there is no LFM. The two ACF grating lobes,
caused by using (tb¢f = 3), are clearly evident.
For the middle part, the pulses remained separated
but an appropriate LFM was added. The resulted
nullifying of the grating lobes is clearly evident.
For the bottom part the spacing between the pulses
was closed, converting them into a single modified
Costas pulse. The second grating lobe at ¿=tb = 2=3
remained nullified, however the null corresponding
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Fig. 8. Frequency evolution (top) and ACF (bottom) of 8 element modified Costas pulse, Costas frequency order: 1 8 3 6 2 7 5 4,
tbB = 12:5, tb¢f = 5, fixed slope polarity.

Fig. 9. Frequency evolution (top) and ACF (bottom) of 8 element modified Costas pulse, Costas frequency order: 1 8 3 6 2 7 5 4,
tbB = 12:5, tb¢f = 5, alternating slope polarity.

to the first grating lobe was lost, as predicted in the
preceding paragraph. Yet, while the original grating
lobe at ¿=tb = 1=3 was ¡3:5 dB (top subplot), the
new value at that delay is approximately ¡28 dB
(bottom subplot). Comparing the middle and bottom
subplots of Fig. 7 shows that the transition from
separated pulses to contiguous subpulses increased
the ACF sidelobes somewhat, but kept them below
¡22 dB.
We can conclude that loosing a null at a particular

¿ = r=¢f does not imply that the grating lobe was
restored. It only implies that the ACF value at that
delay is no more identically zero. Because of the
relatively weak contribution from the cross terms,
the ACF value will remain very low (typically below
¡20 dB). This is true for the case of equal slope

polarity (for which the analytic expression in (15)
was found) as well as for the case of alternating
slope polarity, for which we do not have an analytic
expression.
In Figs. 8 and 9 we present the frequency

evolution and the resulted ACF for modified Costas
pulses of length 8, when the slope polarity is fixed
(Fig. 8) or alternating (Fig. 9).
An appealing intuitive rule for deciding which

of the subpulses should have an inverted frequency
slope, says that subpulses at adjacent frequency
slots (not necessarily adjacent time slots) should
have opposite frequency slopes, because the spectral
overlap between such pairs is the largest. This is the
alternating rule used in Fig. 9.

LEVANON & MOZESON: MODIFIED COSTAS SIGNAL 951



Fig. 10. AF of modified Costas signal with N = 8, tb¢f = 5, tbB = 12:5, zoom on j¿ j · 2tb = T=4.

Fig. 11. AF of classical Costas signal with N = 8, tb¢f = 1, tbB = 0, zoom on j¿ j · 2tb = T=4.

The peak-to-peak frequency deviation, multiplied
by the total pulse duration T, is given by

T(fmax¡fmin) =
T

tb
[(N ¡ 1)tb¢f+ tbB]

=N[(N ¡ 1)tb¢f+ tbB]: (19)

This product is approximately the TBW of the signal,
and also its time compression ratio. For the example
given in Figs. 8 or 9 (in which N = 8) the above
equation yields T(fmax¡fmin) = 380. A conventional
Costas signal needs 19 or 20 (¼p380) elements to
get a similar compression ratio.
So far we presented ACF plots of the modified

Costas signal. In order to demonstrate how well the

ACF nulls (or reduction) hold for higher Doppler
shifts we present in Fig. 10 the partial AF (delay
zoom on the first two bits, out of eight) of the signal
shown in Fig. 9. This plot should be compared with
Fig. 1 (same tb¢f but no LFM), and with Fig. 11
which presents the AF of a classical 8 element Costas
signal, in which tb¢f = 1.

IV. CONCLUSIONS

Adding LFM to the individual subpulses of a
Costas signal allows an increase in the frequency
spacing ¢f much beyond the 1=tb spacing dictated
in a conventional Costas signal. The resulted increase
in bandwidth improves the delay resolution, which
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otherwise would have required a considerably longer
Costas sequence (by a factor of

p
tb¢f, if the total

signal duration is unchanged). Maintaining one of
several possible relationships between the frequency
spacing and the LFM bandwidth will prevent ACF
grating lobes, which would have appeared if LFM
was not added. The suggested modified Costas signal
could be useful in situations where adding LFM
is easier than increasing the length of the Costas
sequence.
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