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When the angle between the target heading and the range vector

is not known a priori, a Doppler velocity radar must estimate them

simultaneously by utilizing a longer section of the track. The con-

ventional least squares iterative solution is compared with a new ex-

plicit alogorithm which utilizes range-rate derivatives. It is shown

that the explicit algorithm is biased but is less sensitive to noise. The

bias, however, can be estimated and removed. Hence, the computa-

tionally simpler explicit velocity estimation method yields better per-

formance. An analytical closed form expression for the resulting

mean square estimation error and simulation results are given.

The well-known relation between the range-rate (Dop-
pler) R(I) and the target velocity V requires knowledge of
the angle 0 between the velocity vector and the range
vector (Fig. 1):

V = -R(') / cos o.(1

In applications such as police radars or muzzle veloc-
ity radars, a priori knowledge of 0 is obtained by preset-
ting a narrow beam radar at a predetermined angle
relative to a known track. If the angle is not known a
priori, then it has to be estimated simultaneously with the
velocity. In the case of a point target moving on a
straight line course at a constant velocity, three parame-
ters must be estimated simultaneously. These could be
(V,Ro, 00) or (V,xo,m), which are defined in Fig. 1.

The measured parameters in a Doppler radar can be
the Doppler frequency f or the Doppler count n. The
Doppler frequency is given by

f fT -fR = 2 R(') /I (2)

where fT is the transmitted frequency, fR is the received
frequency, and X is the wavelength of the transmitted fre-
quency. The Doppler count is given by

ftini = f dt == 2(R.-Ro)lk = 2ARi/A (3)

where Ri = R(ti). The Doppler count ni is obtained by
counting the number of Doppler frequency cycles occur-
ring between time marks to and ti. The Doppler count is
therefore equivalent to the phase, since

4(ti) - 4)(to) = 2-r ni. (4)

The Doppler count is more difficult to measure, since
it requires continuous monitoring of the signal between
time marks. However, it is known to yield better results,
e.g., in satellite Doppler navigation [1]. In the discussion
to follow it is shown that the Doppler count (phase) ap-
proach is an optimal one.

Suppose our data consist of M range difference
(phase difference) measurements ARi, i = 1 ..., M. An
estimation procedure widely regarded as good is given by

M

min { I (ARi - ARI)2}
(V. Ro. 00) i= I

(5)
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where the ARi are synthetic data points generated by as-
suming a particular choice of (V,RO, 00). For sufficiently
high signal-to-noise ratio (SNR) conditions, the method
of least squares is known to yield a bias-free estimate of
the vector parameters under consideration. Since ARi is a
nonlinear function of the target track parameters, the so-
lution to (5) can only be obtained iteratively.

A computationally simpler procedure is suggested
here, based on explicit relations between target track pa-
rameters and the range rate and its time derivatives [21:
V = (R(2 - 3R(I)R(2)2IR(3))1/2 (6)
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Fig. 1. Target-radar geometry.

Ro = -3R(')R(2)IR(3)

00 = arccos [( 1-3R(2)2IR(1)R(3)) -1/2]

In this setting, R"), R(2), and R(3) are first estimated by
performing a linear operation on the measurement vect
The resulting estimates are then substituted into (6)-(8
yield the target track estimates.

It will be shown that the explicit derivatives approa
can be designed to yield a smaller error variance at the
expense of introducing a bias error. The indicated bias
however, can be estimated and subtracted to yield a
nearly unbiased velocity estimate. The computationally
attractive explicit derivatives approach is therefore less
sensitive to random measurements noise than the iterat
method.

11. MEASUREMENT SCHEME

The phase difference data can be obtained from
counting Doppler frequency cycles, as described in (4),
or by a large number of phase observations of the re-
ceived signal relative to the transmitted (reference) signal.
The second approach is applicable only in high SNR
cases. It should be pointed out that each phase measure-
ment can be completed in less than one cycle of the car-
rier (or intermediate) frequency by measuring the time
elapsed between the positive going zero-crossing of the
received signal waveform and the next nearest positive
going zero-crossing of the reference signal. Such a phase
measuring technique is utilized extensively in very low
frequency (VLF) navigation [3].

A typical phase history, recorded with an acoustic ra-
dar simulation, is shown in Fig. 2. The phase history

Fig. 2. Typical phase history.

contains the point of closest approach (0 = 900), but that
does not imply that this point has to be included in the
observation period. As seen from Fig. 2, the measured
phase is given modulo 2T. For high SNR conditions
there is no difficulty in identifying the 2ir steps and cor-
recting them to obtain the original unambiguous phase.

A key feature of the derivatives approach is to para-
meterize the received phase by using the Taylor series ex-
pansion,

4 (t) - bo + b, + b2t2 + b3t3,
-T12 ' t ' T/2. (9)

Clearly there is a simple relation between bl, b2, and b3
and the range rate and its two derivatives,

R(n) = A n! bnI4, n= 1,2,.
(7) For n=0, (10) is true if the left side is R-Ro.
(8) The parameter set to be estimated is therefore

i (bo, bI, b2, b3).

(10)

(1 1)

The last three entries constitute sufficient statistics for the
velocity estimation problem. Here bo is some unknown
constant phase which, however, must be included in the
estimation process in order to eliminate an otherwise al-
most certainly unacceptable bias error.

The least squares estimate of (11) is considerably sim-
plified if the data set consists of an odd number of
equally spaced phase difference measurements,

4r(ti) 4)r(O) = 4)r(MiAt) - ¢r(°),

i = 0, ± 1, +2, ,N. (12)

In that case, the estimated parameters are given by

o 1=P-P2)l 4 2

[(At)2b2 J (0o4 P2 -P2 PO-
N

E [()(A +(MO) ]

LE i [4)r(iZP) 4)r(O)IJ
i= -N

[(At)3b31] = (P2P6-P42)- [;p p2]

N

E i2 k(i'At) (M)r()]
i==-N

(A i)b3 2[ -r i6̂ ) r(°4

N

ik= E i

= i =-

or specifically

PO = 2N + 1

P2 = (2N3 + 3N2 + N)13

P4 = P2(3N2 + 3N-1)/5,

P6 = P2(3N4 + 6N3 -3N + 1)/7.

(13)

(14)

(15)

(16)
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It should be pointed out that the reference phase does not
have to be located at the center of the observation period,
i.e., ¢(°), but could be any other point, e.g., ,.( -N),
without affecting the results. The estimates b1, b2, and b3
are now used, through (10), in (6) to yield the velocity
estimate.

111. ANALYSIS OF THE BIAS ERROR DUE TO THE
ALGORITHM

The form of (9) assumes that 4r(t) is specified by a
third-order polynomial in t. The existence of higher order
Taylor coefficients is the source of a bias error. In its
most general form, the observed phase may be character-
ized by

kr(t) = ¢)(t) + 4)n(t) (17)

where 4,(t) is a zero-mean phase component resulted
from the additive noise at the receiver output, and 4s(t)
is a deterministic (nonrandom) phase component of the
signal. It may generally be represented as

Xx(t) = bo + b1t + b2t2 + b3t3 + 4e(t) (18)

where We(t) is the remainder in the Taylor series expan-
sion.

Let us denote by Abj the difference between the esti-

mated value b and the true value bj. Then the vector of
estimation errors is given by

Ab = (Abo, Ab2, ATbh, Ab3)' (19

If E{ } denotes the statistical expectation of the
bracketed quantity, and if the sums in (13) and (14) are
replaced by integrals, then we get

E {Ab} - 2.25/T -15/T3 0 0
-151T3 180/Ts 0 0
0 0 75/T3 -420/T5

[0 0 -420/T4 2800/T7

T/2
J~ e(t)dt
-TI 2

j t2 4' (t)dt
f72
fT 211

tt4,e(t)dt
IT12

JT/2
t3 4'e(t)dt

T12

For moderate observation intervals the Taylor series is
likely to converge rapidly so that 4e(t) can be approxi-
mated closely by the next two terms of the series. Thus

4:)e(t) - b4t4 + b5t5. (21)

Substituting (21) into (20) and performing the indicated
matrix multiplication, one obtains

E {Ab} = (- 3b4T4/560, 3b4T21 14,

-Sb5 I4/336, 5b5T21 18)T. (22)

The coefficients b4 and b5 are related through (10) to R(4)
and R(5), respectively. In terms of the target track param-
eters, these are given by

(23)R(4) = (3V4/R03) sin2 Oo(5 cos2 0H- 1)

R'5) - (15V5/R4) sin2 Oocos 00(4 7sin2 Ho) (24)

For the sake of completeness the lower order derivatives
are also given:

R -')= -Vcos 0O

R(=)= V2 sin2 OO/RO

(25)

(26)

R(3) 3 V3 sin2 00 cos Oo/Ro2. (27)

The transition from (22) to the bias error associated
with the velocity estimate is not straightforward because
of the nonlinear nature of (6). However, by ignoring
terms on the order of (Abjl/bj)2, one finds that the nor-
malized velocity bias error is given by

E{AV}/V = LTE{Ab} (28)

where L is the vector

LT - (0, -2/b2, b3lb22

-1 /b,, I b3)/(b1b3/b22 - 2). (29)

Performing the inner product between (29) and (22)
and using (10) and (23)-(27) one obtains

E {AV}/V = 0.025(VT sin OO/Ro)2
(2 + cos2 00). (30)

The most critical feature in the normalized bias error
is VT sin 0 IR, the ratio of the target displacement, pro-
jected in the radial direction to the target range. For VTIR
<1 the bias error is likely to be acceptable, being only a
small fraction of the actual velocity. However, even that
bias error can essentially be removed by updating the ve-
locity estimate as follows:

Vunbiased V[l 0.025(VT sin 01/RO)2

(2 + cos2 O0)] (31)

where V, Ro, and 00 are estimated using (6)-(8), (10),
(13), (14), and (16).

Equation (31), together with the equations listed be-
low it, are a major practical result of this work. We
therefore pause at this point to present simulation results
which confirm it. Random error analysis will follow the
simulation results.

IV. SIMULATION RESULTS

Computer simulation was performed by generating
phase data with additive Gaussian noise and from it esti-
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mating the velocity in three ways. One was the iterative
least squares algorithm which is summarized in (5). The
two others were the biased (6) and the unbiased (31) de-
rivatives approaches.

The simulated data were generated using the follow-
ing fixed parameters: V= 1 ms-, m= lm, L\t= 10-3 S,
and N = 400. The phase noise was introduced as a Gaus-
sian range noise, with zero mean and a changeable stan-
dard deviation UR-

The simulation results are given in Fig. 3. The right
side was obtained using CR= 10'- m. The left side used
practically noiseless data (CR = 10 17 m). The units scale
is arbitrary; hence meters could be replaced by kilome-
ters, as long as it is done consistently in all the relevant
parameters. The horizontal axis in Fig. 3 is time or dis-
tance along the track, k being the serial number of the
data sample. The velocity estimation (vertical axis) was
calculated repeatedly every 20 samples (i.e., every 0.02
m along the track). Each velocity estimate is based on
2N + 1 = 801 consecutive samples. The point of closest
approach occurred at k = 3000.

The upper pair of velocity curves was obtained using
the iterative algorithm. The noiseless left side demon-
strates the complete lack of bias error in this approach.
The right side demonstrates its sensitivity to measurement
noise. In particular, note the increased sensitivity near the
point of closest approach (0.01 k= 30). Obviously it is
difficult to measure velocity, using Doppler radar, when
the target motion is perpendicular to the range vector.

The bottom pair of velocity curves was obtained using
the derivatives algorithm without a bias correction (6).
The bias error is clearly seen, reaching a maximum at the
point of closest approach, as predicted by (30).

The simulation demonstrates that the random velocity
error in the derivatives approach is smaller than in the it-
erative approach. The reason is simple. In effect, the de-
rivative approach first fits a smooth third-order
polynomial to the noisy data. It then obtains explicitly
what the iterative approach would have converged to, had
it used the smooth data. As a matter of fact, the com-
bined approach was tried of first fitting a third-order po-
lynomial to the data and then applying the iterative
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Fig. 3. Simulation results.
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algorithm. Except near the singular point of closest ap-
proach it yielded very similar results in bias and random
error to the results obtained with the uncorrected deriva-
tives approach.

Finally, the middle pair of velocity curves in Fig. 3
was obtained with the derivatives algorithm including bias
estimation and correction (31). It shows that the bias er-
ror is almost completely removed, while the random error
remains unchanged. This result confirms the validity of
(31) and the assumptions leading to it. In particular, it
confirms that thez,bias error is due mainly to the neglected
fourth- and fifth-order coefficients of the Taylor expan-
sion. Had we included these coefficients in the estimation
process, the bias error would have disappeared, but the
random error would have increased almost to the level of
the random error in the iterative approach.

Comparing the top and middle parts in Fig. 3 clearly
demonstrates the superiority of the derivatives approach.
It should be added that the explicit derivatives approach
is computationally simpler and faster than the iterative al-
gorithm.

V. RANDOM ERROR ANALYSIS

In order to analyze estimator stability in the presence
of the random phase component, one must make some
assumptions concerning the noise statistics. Suppose the
receiver additive noise is a sample function from a zero-
mean Gaussian random process whose power is equally
distributed over a frequency band of W hertz centered
about the signal center frequency.

Consider all Nyquist rate samples (At= 1/W s) of the
observed phase difference. For high SNR conditions the
4J(t,) are statistically uncorrelated zero mean random var-
iables whose variance is given by

E {4)2(ti)} = WNO/A2. (32)

Here N0/2 is the (two-sided) noise spectral level and A is
the amplitude of the radar return signal. The quantity
WNO/A2 is the ratio of the average noise power to the sig-
nal power prior to the phase sampling operation.

If the observation time is large compared with the
noise correlation time (i.e., WT >> 1) and if At= 1/W
then, in a similar way to the one that led to (20), it can
be shown that

cov(Ab) = (33)A2

L2.25/T
-15T/P
0

0

- 15/P' 0 0
180/PT 0 0

75/T -420/T5
0 -420/P 2800/P

It is interesting to note that the Fisher information
matrix of the parameters set (bo, b2, bl, b3), calculated
without assuming any prior processing of the received
data, yielded the inverse of (33). This implies that in the
high SNR situation, the proposed measurement procedure

yields an estimate of b whose error variance is the mini-
mum attainable. Furthermore, (33) was realized using
Nyquist samples of the observed phase. A higher sam-
pling rate will not reduce the variance error.

The transition from cov(Ab) to the velocity variance
follows the same elimination of higher order terms, as
was done to obtain (28), and yield

var(AV)/V2 = LT cov(Ab) L.

In terms of target track parameters, (34) becomes

var(AV)/V2 = (5/16) (1/2Xrr)2 (NO/A2T)

(X/VT cos 0)2 [15(1 + COS2 0)

+ 48(5 COS2 0 -7) (RIVT)2
+ 2240(R/VT)4].

(34)

(35)

The last of the three terms on the right side of (35) repre-
sents the contribution to the velocity error variance due to
the random error in the b3 estimate. For moderate
changes in target-radar geometry (VTIR < 1), this last
term becomes dominant, which indicates that the velocity
estimate depends on the quality of the highest derivative.
Ignoring the other two terms, and taking the square root
of (35), yields

r V = (7 1/2 5/hrT) (NOIA2!)1 2 (R/VT)2 (X/VT cos 0)

(36)

where orv is the rms of the velocity random error.
Finally, it is interesting to express uv/V as a function

of CR, which was used in the simulation. Using (10) and
(32), note that

(NoIA2T)1/2 = (NOW/A2)1/2 (WT) - 1/2

= (4 T(R / X) (2N + 1) -12. (37)

Inserting (37) in (36) yields the desired expression

cr,/V= 71/2 20UR(RIVT)2(I/VT cos 0) (2N+ 1)-I/2.

(38)
When the numerical values used in the simulation are in-
serted in (38), the resulting o, is in very good agreement
with the simulation velocity output noise.

VI. BIAS ERROR DUE TO ACCELERATION

Inclusion of an acceleration in the iterative algorithm
(5) is straightforward (but costly in terms of sensitivity to
noise). The explicit approach, however, depends on the
form of (6)-(8), which were developed assuming constant
velocity. An acceleration component results in an addi-
tional bias error. In this section only a fixed acceleration
a, in the direction of the existing velocity, is treated. Let

V = V0 + at (39)

where V0 is the velocity at t= 0. Then the range-rate de-
rivatives at t=0 become
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RI2" = V02sin2 OO/RO- 2a cos 00

R(3) = 3V02 sin2 o0cos 0o/R)2 + 6V(0 a sin2 OO/RO. (41)

Using (40), (41), (10), and (19) we get

E {Ab} = (4'r aIX) (0,-cos 00,, 0, V0 sin22I/RO)T. (42)

Using (42) and (29) in (28), the normalized bias error due
to acceleration is obtained.

E {AV0}/Vo = -(aR0IV02) (cos 00 + I/cos 00),
aR0/V02 < I . (43)

The dominant feature of (43) is the dependence on
aR0IV02. This can be explained intuitively as follows: at
long range the acceleration will cause significant change
in V before a significant change in target-radar geometry
occurs, which is necessary for the velocity estimation.
Note that this bias cannot be removed unless the accelera-
tion coefficient a is estimated.

We have described an explicit algorithm for angle-in-
dependent velocity measurement utilizing the range rate
and its first two time derivatives. Closed form expres-
sions for the bias and error variance (under high SNR
conditions) were obtained. Using simulation, the explicit
derivatives approach was compared with the iterative
nonlinear least squares solution. One finds that the pro-
posed method is less sensitive to random errors incurred
by the additive noise component.
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