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Abstract- Two recent results are combined to create a radar 

signal with improved performances. The signal is created initially 
from a coherent train of N identical modified Costas pulses. An 
orthogonal set of N phase codes is then overlayed on the N pulses. 

I. INTRODUCTION 

The time-bandwidth product (TBW) of a Costas pulse [1] is 
determined solely by its duration T and the number of its 
elements M. Since the delay resolution of such a signal is 
inversely related to the TBW, improving delay resolution 
requires increasing M.  In recent papers [2,3] we show how the 
bandwidth of a modified Costas pulse can be increased without 
increasing M, and yet avoiding grating lobes.  

 
The Costas signal, its modification and any other pulse 

compression signal usually exhibit sidelobes in their 
autocorrelation function (ACF). In another recent paper [4] we 
show that in a coherent train of N identical pulses (any type), 
the ACF sidelobes can be completely removed from most of the 
single pulse duration T, where by most we mean ( ) NN 1− of 
T. The sidelobe removal is achieved by overlaying an 
orthogonal phase coding on the N pulses. 

 
In the present paper both techniques are combined to yield an 

orthogonal train of modified Costas pulses. The new signal 
achieves both high TBW, hence high delay resolution; low 
ACF sidelobes in the remaining N1 part of T that is not 
identically zero; and low recurrent lobes at multiples of the 
pulse repetition interval.  

Sections II and III describe briefly the modified Costas pulse 
and the orthogonal overlay. Section IV gives an example of an 
8 pulse signal. In section V it is compared to an orthogonal 
train of LFM pulses with the same TBW. Finally, in section VI 
we show that despite the diversity between the pulses in the 
coherent train, creating filters matched to non-zero Doppler 
shifts can still be implemented effectively using discrete 
Fourier transform (DFT), as is usually done when the pulses 
are identical. 
 

II. MODIFIED COSTAS PULSE 

A modified Costas pulse differs from a conventional Costas 
pulse [1] by increasing the subcarriers spacing f∆  beyond the 
nominal spacing btf 1=∆ , where tb is the transmission 
duration of  each subcarrier.  Normaly, when btf 1>∆ , the 
autocorrelation function (ACF) exhibits grating lobes at delay 
multiples of  f∆1 . As shown in [2,3], replacing the fixed 
frequency during tb  by linear-FM with frequency deviation B, 
can nullify the grating lobes, when one of several particular 
relationships exist between ftb∆ and Btb .  The advantage of 
the modified signal is the increased bandwidth, hence improved 
delay resolution, without an increase in the number of elements 
in the Costas array. A modified Costas pulse with M elements 
(bits) achieves the same pulse compression as a conventional 
Costas with ftM b∆  elements and equal total pulse width. 
For example, the delay resolution of a modified Costas pulse 
with M = 8 and 5=∆ftb  is equal to the delay resolution of a 
conventional Costas pulse, of the same duration, but with M = 
18 elements.  

The frequency evolution of a modified Costas pulse with 
,8=M  5=∆ftb  and 5.12=Btb  is shown in Fig. 1. Using 

up and down LFM slopes [3] minimizes the overlap between 
neighboring subcarriers, hence minimizes autocorrelation 
sidelobes. 
 

III. ORTHOGONAL OVERLAY 

Match processing a coherent train of N identical pulses, of 
any kind, yields the same delay resolution as a single pulse. As 
a matter of fact, over the delay span T≤τ ,  where T is the 
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Fig. 1.  Frequency evolution of a modified Costas pulse,  
5.12,5 ==∆ bb tBtf  



pulse duration, there is no difference between the ACF of a 
single pulse and that of a train of pulses.  Using a train of 
identical pulses improves the Doppler resolution, which now 
drops from T1   to ( )rNT1 , where rT  is the pulse repetition 
interval. However, as shown in [4], when the pulses are not 
identical, but overlaid by an orthogonal phase-coded set, the 
ACF of the train can be improved in two ways: (a) the ACF 
sidelobes within most of the pulse duration can be reduced to 
zero, and (b) the recurrent ACF lobes (at multiples of the 
repetition interval) are drastically reduced. 

 
Fig. 2 presents an example of overlaying the 8 rows of a 

binary orthonormal 8x8 matrix on N = 8 costas pulses, each 
pulse is constructed from M = 8 elements (bits). The + and – 
symbols indicate the overlayed binary phase coding of the bits 
in each pulse. It makes no difference if during the bits the 
frequency remains constant (conventional Costas) or shifts 
linearly (modified Costas). Orthogonal overlay works as well 
for any other pulse signal, not necessarily devided into bits, but 
arbitrarily sliced into P slices. If the signal is constructed from 
M bits, it can still be sliced into P slices, and it is not required 
that M = P. 

 
An N-by-P matrix A is said to be orthogonal when the dot 

product between any two columns of A is zero (ATA is 
diagonal). Note that orthogonal N-by-P matrices exist only for 

NP ≤ . An important case is where all elements in the matrix 
have the same absolute value (normalized to unity) and differ 
only in their phase denoted by φn,p (in this case we will refer to 
the matrix A as an orthonormal phase coding matrix). For an 
orthonormal phase coding N-by-P matrix A={an,p}={exp(jφn,p)} 
the signal maintains its envelope power properties and we can 
write that ATA=NI where I is a P-by-P identity matrix. In the 
example given in this paper M = N = P = 8. 

 
Note that the n’th Costas pulse in Fig. 2 was overlaid by the 

n’th row of A = {exp(jφn,p)}, where φn,p is the binary phase 
matrix in (1). An example of a polyphase orthonormal matrix is 
given in (2). Its rows are all the cyclic shifts of a P4 signal of 
length 8. 
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10010110
01011010
11001100
10101010
11110000
01100110
00111100
00000000

binary πϕ           (1) 
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14707410
47074101
70741014
07410147
74101470
41014707
10147074
01470741

8P4
πϕ

   (2)  
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Fig. 3.   Real envelope of  8 Costas pulses 
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Fig. 2.   Binary orthogonal overlay on 8 Costas pulses
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Fig. 4.  AF and  ACF  (zoom on a repetition period) 



   

IV. ORTHOGONAL TRAIN OF MODIFIED COSTAS PULSES  

In our example the pulse repetion period is br tTT 243 == .  
The relatively large duty cycle was selected to simplify the 
drawings. The real envelope (amplitude) is plotted in Fig. 3.  
Because the number of slices P is equal to the number of bits 
M, the slice duration st  equals the bit duration bs tt = . It was 
shown in [4] that due to the orthonormal overlay, the ACF 
sidelobes are identically zero for TTt rs −≤≤ τ . In our 
example this implies zero sidelobes for bb tt 16≤≤ τ .  At 

br tTT 16=−=τ  the 1’st recurrent lobe begins. While not 
cancelled, the diversity introduced through the overlay has 
reduced the recurrent lobe peak to approximately -20 dB.  The 
ambiguity function (AF) and the ACF, plotted in Fig. 4, extend 
in delay as far as the end of the 1’st recurrent lobe. They 
demonstrate the sidelobe and recurrent lobe behaviour outlined 
above. The AF (Fig. 4, top) shows the first Doppler null (of the 
zero-delay cut) at ( )rNT1=ν .  This (and the entire shape of 
the zero-delay cut) is a universal property of a pulse train in 
which the real amplitudes of the different pulses are identical. 
While not shown, the AF will exhibit a recurrent Doppler peak 
at rT1,0 == ντ . The AF recurrent Doppler peak value will 
be only slightly less than one. Fig. 5 zooms in on the pulse 
duration of both the AF (top) and ACF (bottom). Note that for 

bb tt 8≤≤ τ  the ACF sidelobes are indeed zero, but at higher 
Doppler they slowly build up.  Fig. 6 zooms in even further, 
and shows only the first bit. Only here the ACF sidelobes are 
not zero, but decrease toward zero as Doppler increases.  From 
the ACF in Fig. 6, we note that the mainlobe width (1’st null) 
ocurs at 40nullst1 bt≈τ , implying a signal bandwidth of 

btBW 401 nullst1 ≈≈ τ .  Indeed, since ,8=M  ,5=∆ftb  
5.12=Btb ,  we get from Fig. 1 

 
 

( ) ( ) 5.471minmax =+∆−=− BtftMfft bbb              (3) 
 

 
The total TBW of one pulse is therefore approximately 
 
 

( ) ( ) 3805.478minmaxminmax =⋅=−=− fftMffT b   (4)
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Fig. 5.  AF and  ACF  (zoom on a single pulse) 
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Fig. 6.  AF and  ACF  (zoom on a single bit) 



 
 

The frequency evolution, as indicated in Fig. 1, suggests less 
time spent at the edge frequencies than at center frequencies. In 
a conventional Costas signal, the frequency distribution is more 
uniform. The one sided spectrum of the complex envelope of 
our signal (Fig. 7) shows the tapering beginning at btf 20≈ . 

 

V. COMPARISON WITH ORTOGONAL TRAIN OF LFM PULSES  

An expected question is how different are the performances 
of the signal discussed above, with a train of LFM pulses, 
overlaid with the same orthogonal phase coding. Using M = 8 
bits, setting 6=∆ftb  and 6=Btb  and maintaining the same 
slope polarity in all 8 bits, will create a single LFM pulse with 
( ) 380minmax =− ffT . Then N = 8 such pulses with the same 

duty cycle TTr 3= are overlayed with the same binary code, 
creating the signal to be compared with. The resulted AF and 
ACF (zoom on a single bit) appear in Fig. 8. Comparing it with 
Fig. 6 indicates significantly lower level of near-sidelobes 
(within the first bit) when the train was constructed from 
modified Costas pulses. Outside the first bit the ACF sidelobes 
are inherently zero in both signals. 

 

VI. MATCHED FILTERS FOR HIGHER DOPPLER SHIFTS 

The zero-delay cut of the ambiguity function is identical to 
the zero-delay cut of the AF of any signal with the same real 
amplitude (no matter what other frequency or phase modulation 
is used, including none). As is often done in a coherent train of 
identical pulses, filters matched to higher Doppler shifts can be 
implemented by performing DFT on the N pulse-compression 
outputs. This is equivalent to adding inter-pulse phase steps to 
the reference signal.  Fig. 9 shows the inter-pulse phase steps 
that should be added to the reference signal in order for it to 

match a return signal with Doppler shift of  ( )rNT1=ν .  
Fig. 10 shows the delay-Doppler response of a correlation 
receiver for the orthogonal train of modified Costas pulses, 
which uses a reference signal with the added inter-pulse phase 
steps. The peak has moved in Doppler to ( )rNT1=ν . The new 
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Fig. 7.  Spectrum of 8 modified Costas pulses with  
binary orthogonal overlay 
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Fig. 9.  Inter-pulse phase compensation for a reference 
 signal  matched to ( )rNT1=ν   

Fig. 8.  AF and  ACF  (zoom on a single bit) of a train of LFM pulses
with orthogonal overlay 



delay-Doppler response looks like a copy of the ambiguity 
function, shifted in Doppler by ( )rNT1 . 

  
The Doppler axis in Fig. 10 extends as far as the end of the 

first Doppler recurrent lobe, whose center is spaced rT1  from 
the center of the main Doppler lobe. Because the zero-delay cut 
of the AF is independent of any phase and/or frequency 
modulation, it soars above the otherwise low sidelobes 
pedestal, achieved thanks to the frequency and phase 
modulation. The only mean to reduce Doppler sidelobes on the 
zero-delay cut is to add amplitude modulation. One possibility 
is to introduce inter-pulse amplitude steps according to one of 
the many well known windows (Hann, Hamming, etc.).  
However, inter-pulse amplitude weighting will violate the 
orthogonality between the different pulses in the train. Without 
orthogonality the property of zero ACF sidelobes beyond the 
first bit (= slice), will be lost.  

 
Fig. 10 showes some attenuation of the first Doppler 

recurrent lobe relative to main Doppler lobe. If the ratio TTr  
were considerably larger than 3, that attenuation would have 
been much smaller. Since LFM pulses exhibit better Doppler 
tolerance than the modified Costas pulses, in their delay-
Doppler response the Doppler recurrent lobe will be less 
attenuated, but slightly shifted in delay.  

 
VII. CONCLUSIONS 

Our example of 8 modified Costas pulses, of 8 elements 
each, yielded pulse compression of 320. Conventional 8 
element Costas pulses would have yielded pulse compression 

of 64. The added orthogonal phase-coded pulse diversity 
limited the non-zero ACF sidelobes to only 1/8 of the pulse 
duration, with the peak of those sidelobes at approximately 

28− dB. The diversity attenuated the recurrent lobes to a level 
of approximately -20 dB. We also showed that despite the 
pulse diversity the signal lends iteslf to simple Doppler 
processing, commonly used in more simple coherent trains of 
identical pulses. A similar orthogonal train of LFM pulses 
(with the same bandwidth) exhibited higher near-sidelobes. 

 
In addition to the improved ambiguity function, the new 

signal offers advanges in the contex of coexistance with other 
radars, and reduced probability of intercept. LFM pulses have 
only two basic permutations - positive and negative frequency 
slope. Eight element Costas array can be produced in 444 
different permutations (16 element array in 21104 
permutations). Furthermore, the 8 different pulses (different 
due to the overlay) can be arranged in 8! = 40320 differrent 
orders. There can also be several different binary overlays, 
each one providing its N! different orders. Thus, a signal with a 
given set of parameters can still be produced in milions 
different permutations. Each permutation will be detected 
properly only by its own matched filter. The cross ambiguity 
between different permutations of the same general signal 
(using the same subcarrier frequencies) is likely to exhibit a 
low pedestal shape. 
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Fig. 10. Delay-Doppler response with a reference signal matched to 
( )rNT1=ν   


