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I. INTRODUCTION

Multicarrier (or multifrequency) signals can be
divided into two categories: 1) signals in which at
any given time only one frequency is transmitted, and
2) signals with simultaneous transmission on several
subcarriers. Costas signals [1] belong to the first
category. Orthogonal frequency division multiplexing
(OFDM) signals [2] used in communications, and
multicarrier complementary phase-coded (MCPC)
signals [3] suggested for radar, belong to the second
category. Signals in the first category usually (but not
necessarily) exhibit constant amplitude, while signals
of the second category exhibit variable amplitude.
A multicarrier signal can be described by a

2 dimensional array in which the rows represent
frequencies and the columns represent time slots
(which we refer to as bits). The array could be binary,
as in Costas, where a 1 in the k, l element implies that
the kth frequency is transmitted during the lth bit. A 0
implies no transmission corresponding to that element.
In OFDM and MCPC the array elements are

complex numbers, usually with unity magnitude,
implying phase coding. In all three signals mentioned,
the frequency spacing ¢f between subcarriers is
related to the bit duration tb according to

¢f =
1
tb
: (1)

This relationship implies orthogonality between
the signals on the different subcarriers, when the
integration time is a multiple of tb.
The signal suggested here is based on a ternary

array comprised of the elements f0,1,¡1g. This
vocabulary allows for frequency coding, as in Costas,
but with additional binary phase coding. A ¡1 in
the k, l element implies that the kth frequency is
transmitted during the lth bit, with reversed polarity
(i. e., with a phase shift of ¼). An example of a
4£ 12 ternary array is given in (2), and a graphic
representation is shown in Fig. 1.

A=

26664
0 0 0 1 1 0 ¡1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 1 ¡1 0

0 1 0 0 0 0 0 1 0 0 0 ¡1
1 0 1 0 0 0 0 0 ¡1 0 0 0

37775 :
(2)

A concise representation of the signal appears
in Table I. It lists the bit location of each frequency
(row). A negative sign indicates polarity reversal. The
only requirement from the ternary array in (2) is that
the discrete 2-D autocorrelation of the array, obtained,
for example, by the MATLAB instruction xcorr 2(A),
will have in its central row (no vertical shift) sidelobe
levels of only 0 or §1.
It is interesting to compare the discrete

autocorrelation (Fig. 2) of the simple 4£ 12 array
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Fig. 1. Graphic representation of ternary array in (2).

Fig. 2. Discrete autocorrelation of ternary array A.

Fig. 3. Magnitude of autocorrelation function of signal based on ternary array A.

in (2) with the continuous autocorrelation functions
(ACFs) of the actual signal based on it (Fig. 3). In
the discrete array A the rows are decoupled and the
central row of the discrete 2-D autocorrelation is the
sum of the autocorrelations of the individual rows.
On the other hand, when calculating the ACF of the
corresponding multicarrier signal, we cannot assume
such decoupling, except at delays equal to multiples
of the bit duration. Indeed, at such delays the ACF
in Fig. 3 exhibits either the value zero (at ¿=tb =
1,2,4,6,7,9,11) or 1=12 = 0:083 (at ¿=tb = 3,5,8,10),
which are the same values as in the corresponding
delays of Fig. 2.

TABLE I
Concise Representation of Ternary Matrix in (2)

4 5 ¡7
6 10 ¡11
2 8 ¡12
1 3 ¡9

Another major difference between Figs. 2 and
3 is the width of the mainlobe. From the signal’s
ACF (Fig. 3), we learn, as expected, that the first
null appears at a delay equal to the inverse of
the bandwidth K¢f. Thus, since the number of
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frequencies is K = 4, we get

¿null
tb

=
1

K¢f

1
tb
=
1
K
= 0:25: (3)

Since the number of bits is L= 12, the pulse
compression ratio is

CR =
Ltb
¿null

= LK = 48: (4)

The construction of a multicarrier bi-phase signal
is described in Section II. It is based on an early work
by the first author [4]. In Section III we demonstrate
the performances of a 40£ 120 signal. Section
IV is dedicated to the construction of a family of
multicarrier bi-phase signals. A comparison with a
Costas signal is given in Section V, and conclusions
in Section VI. Appendix A contains a Matlab program
that implements the construction algorithm and yields
one (or all) 40£ 120 basic signals. All possible 22
basic signals (arrays) are listed in Appendix B.

II. CONSTRUCTION OF MULTICARRIER BI-PHASE
SIGNAL

Our discussion is limited to a construction based
on Galois field GF(pz) where p is a prime and z is an
integer ¸ 1. The construction can be divided into four
steps.

A. Construction of Ensemble with Property of No
More Than One Coincidence

The first stage of the construction algorithm is
based on GF(pz). It calls for the creation of a balanced
ensemble of pulse sequences with the feature of
not more than one coincidence (ENMOC) [4]. By
“balanced” we mean that every sequence in the
ensemble has the same number of unity elements.
A balanced ensemble of pulse sequences with the
ENMOC feature is a family of binary sequences

aij : j = 0,1, : : : ,Ni¡ 1,
i = 1,2, : : : ,Q, aij 2 f0,1g, ai0 = a

i
Ni¡1 = 1

(5)

where Ni is the length of sequence number i, and the
sequences obey the following two properties.

1) Each sequence exhibits a “no more than one
coincidence” (NMOC) feature, which implies that
the sidelobes of the discrete ACF of every NMOC
sequence should not exceed unity, i.e.,

r(k) =
Ni¡1¡jkjX
j=0

ajaj+jkj =
½
N0, k = 0

0 or 1, jkj6= 0
(6)

where N0 is the number of 1 elements in the NMOC
sequence.

2) The cross-correlation between the ith and the
lth sequences should obey

xi,l(k) =

8>>>>><>>>>>:

B¡1¡kX
j=0

aija
l
j+k, k ¸ 0

B¡1X
j=¡k

aija
l
j+k, k < 0

9>>>>>=>>>>>;
= 0 or 1,

for i, l = 1,2, : : : ,Q, i6= l (7)

where B =max(Ni,Nl) is the size of the basis of the
ensemble. Q in (5) and (7) is the number of the
different pulse sequences that obey properties 1 and
2. The resulted ENMOC is said to be of power Q.

A detailed description for constructing an ENMOC
is given in [4]. It is based on using the property of
linear dependence of p+1 elements of the extended
Galois field GF(pz) [4, 5]. A construction example of
an ENMOC is also given in [4] and Table II of [4]
lists some ENMOCs.
For the remainder of our paper we need to cite

from [4] the following three equations:

N0 = p+1 (8)

Q = p(z¡3) +p(z¡5) + ¢ ¢ ¢+1, z > 3, z ´ 1(mod 2) (9)

Q = fp(z¡4) +p(z¡6) + ¢ ¢ ¢+1gp, z > 4, z ´ 0(mod 2):
(10)

It is known [4] that the elements of the field GF(pz)
are separated from each other by

N =
pz ¡ 1
p¡ 1 : (11)

Therefore the numbers of elements of the field GF(pz)
will be reduced modulo N. The number of bits in the
signal will be

L=N ¡ 1: (12)

For constructing a multicarrier signal with L bits, it
is first necessary to form from the ENMOC an array
that uses the results of automorphic transformation of
all sequences of the ENMOC and exclude all unity
elements that are placed at the zero time position.
Then the number of all elements in the array become

Nar =Q(p+1)p: (13)

Therefore to construct a signal with L bits we need to
equate L and Nar, namely

pz ¡ 1
p¡1 ¡ 1 =Q(p+1)p: (14)

For z ´ 1(mod 2), solutions of (14) (using (9)) exist if
p is a prime and

z = 5+2n, n= 0,1,2, : : : : (15)

It can be shown that increasing p will decrease the
ratio K=L and raise the level of peak ACF sidelobes
(without bi-phase modulation), and vice versa.
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TABLE II
Sequences of ENMOC and Their Automotphism Results

D1 = (0,1,36,102) D2 = (0,35,101,120) D3 = (0,66,85,86) D4 = (0,19,20,55)
D5 = (0,2,10,17) D6 = (0,8,15,119) D7 = (0,7,111,113) D8 = (0,104,106,114)
D9 = (0,3,64,108) D10 = (0,61,105,118) D11 = (0,44,57,60) D12 = (0,13,16,77)
D13 = (0,4,27,92) D14 = (0,23,88,117) D15 = (0,65,94,98) D16 = (0,29,33,56)
D17 = (0,5,43,80) D18 = (0,38,75,116) D19 = (0,37,78,83) D20 = (0,41,46,84)
D21 = (0,6,30,51) D22 = (0,24,45,115) D23 = (0,21,91,97) D24 = (0,70,76,100)
D25 = (0,9,71,82) D26 = (0,62,73,112) D27 = (0,11,50,59) D28 = (0,39,48,110)
D29 = (0,12,34,81) D30 = (0,22,69,109) D31 = (0,47,87,99) D32 = (0,40,52,74)
D33 = (0,14,72,103) D34 = (0,58,89,107) D35 = (0,31,49,63) D36 = (0,18,32,90)
D37 = (0,25,53,79) D38 = (0,28,54,96) D39 = (0,26,68,93) D40 = (0,42,67,95)

Taking into consideration the limited size of a
journal paper, we choose for the remainder of the
paper the case in which:

p= 3, z = 5: (16)

Using (9), (11), and (12), this choice will result in
Q = 10, L= 120. As will be deduced shortly the
number of frequencies K is given by

K = (p+1)Q (17)

yielding K = 40 frequencies.
The construction algorithm described in [4]

requires an exhaustive search of all the sequences that
can create the ENMOC. With a relatively large value
of L (such as L= 120), the exhaustive search becomes
very computing intensive. Instead, we propose here an
improved algorithm.
In the process of our work on this family of

signals it became clear that every ensemble fits
three different primitive polynomials. Or, in other
words, three different polynomials can create the
same ensemble. These are known as p-conjugate
polynomials [6]. This property can be written as
follows:
Let f(1)(x), f(2)(x) and f(3)(x) be p-conjugate

primitive polynomials. Of course they form different
isomorphic extended GFs, with coordinates columns
A(1)i , A

(2)
i and A(3)i , i= 0,1, : : : ,120. If we denote

the companion matrices corresponding to the three
p-conjugate polynomials by H1, H2, H3, then for
arbitrary u and t [4]

A(1)u+t =H
u
1 A

(1)
t , A(2)u+t =H

u
2 A

(2)
t , A(3)u+t =H

u
3 A

(3)
t ,

u+ t= 1,2, : : : ,120: (18)

In (18) the subscript of A represents the degree of the
primitive elements of the polynomials. It is clear that
the coordinates (columns) obey A(1)u+t6= A(2)u+t6= A(3)u+t,
u+ t > 4. Note that if the set A(1)u , A

(1)
q , A

(1)
r belongs

to the ENMOC s̃ then the sets A(2)u , A
(2)
q , A

(2)
r and A(3)u ,

A(3)q , A
(3)
r also belong to the ENMOC s̃.

The improved algorithm for constructing an
ENMOC uses simultaneously the properties of
linear dependence and of the p-conjugate primitive
polynomials. It is much less computational intensive

than the original construction. A Matlab version of
it is given in Appendix A. The ENMOC listed in
the first column of Table II was obtained with this
program.

B. Construction of 40£120 Element Array
In the second step we find a 120 element array,

in which all integers are different from each other.
From the algorithm for constructing the ENMOC it
became clear that the sequences resulted from the
automorphism of the Q sequences that belong to an
ENMOC, do not intersect with the Q sequences of the
ENMOC. If a sequence that belongs to the ENMOC is
designated by Di,

Di = (d
1
i ,d

2
i ,d

3
i ,d

4
i ) (19)

the corresponding N0¡1 (= 3) automorphism results
Di+k can be obtained by

Di+k = (d
1
i ¡dk+1i ,d2i ¡dk+1i ,d3i ¡dk+1i ,d4i ¡dk+1i )[mod (L+1)],

k = 1,2, : : : ,N0¡ 1: (20)

So, for example, from D1 = (0,1,36,102) we get

D2 = (0¡ 1,1¡ 1,36¡ 1,102¡ 1)[mod (121)]
= (120,0,35,101)

which, after sorting, becomes D2 = (0,35,101,120).
Similarly we will get D3 = (0,66,85,86) and D4 =
(0,19,20,55). In Table II the sequences of the
ENMOC Di, i= 1,5,9, : : : ,37 are listed in the first
column, and the sequences created by automorphism,
Di, i= (2,3,4), (6,7,8), : : : , (38,39,40) are listed in
columns 2 to 4. Note that the sequences resulted from
automorphism satisfy condition (6) but not (7).
The 120 element binary array described above

fits three different primitive polynomials of degree
5, irreducible above the field GF(3):

f(1)(x) = x5¡ x¡ 2
f(2)(x) = x5¡2x3¡ 2x¡2
f(3)(x) = x5¡ x4¡ 2x3¡ 2x2¡ 2x¡ 2:

(21)

For more details look at Table VI.
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All together there are K = (p+1)Q = 40 sequences
in Table II. If we exclude from all sequences the unity
elements at the common location of zero, leaving p
(= 3) unity elements in each sequence, we obtain in
the modified Table II a total of L= p(p+1)Q = 120
numbers, all different from each other. In other words
we find all the numbers from 1 to 120 and each one
appears only once.

C. Frequency Allocations

Converting the modified Table II (without the
locations at 0) to a multicarrier signal involves
assigning 40 carrier frequencies to the 40 sequences.
One option for the assignment rule is that the
normalized frequency tbfn corresponding to the kth
sequence will be

tbfk = 20:5¡ k, k = 1,2, : : : ,40: (22)

With this choice, for example, during time slots
1, 36, and 102 (which appear in sequence D1) the
transmitted subcarrier will be the one shifted 19:5=tb
off the center frequency. The resulted structure
appears as the array B on the left hand half of
Table III. Array C, on the right hand half of Table III,
lists the delay differences within each row of B. Note
that in C no number appears more than twice.
Representing a transmission of frequency k during

bit (time slot) l, by placing a 1 in the (k, l) element of
a 40£ 120 array, and writing 0 at unused elements,
will create a binary array with exactly one 1 in each
column and three 1s in each row.
The sidelobes of the central row of the discrete

2-D autocorrelation of a binary array created in
this way will have values of 0, 1, or 2, relative to
a mainlobe height of 120 (see Fig. 4), at locations
specified by the numbers in array C, on the right
hand half of Table III. The highest autocorrelation
value is 2 because no number in array C appears there
more than twice. For reasons that will become clear
shortly, it is also required (and achieved by the above
construction) that if a number in C is repeated twice,
the repetition must not occur in the same row of C.
Note in Table III that we split the two arrays

into 10 groups of 4 rows each. Each group of 4
rows corresponds to one row in Table II. Each
row in Table II contains an NMOC sequence and
its corresponding automorphism products. On the
top group of 4 rows in array C, we marked all the
repeats of delay differences in order to show that they
occur within the group. This property appears in all
the other groups (of 4 rows) in array C. This is an
important structural feature of the synthesized signal.
We name this property “separability.” Separability
provides the following two important properties. 1)
It allows to change polarities of frequencies within a
group in array B, that will affect only the sidelobes at
delays listed in the corresponding group in array C.

TABLE III
Frequency-Delay Array (Left) and Corresponding Delay

Differences

2) It allows adding amplitude weighting to the
different frequencies, that will not affect the
cancellation of ACF sidelobes of level 2, as long as
the frequencies of each group are clustered together.
This “separability” property exists for other signals
constructed in this way, with other values of p and z
that satisfy (15), and the number of coincidences will
remain p¡ 1.
In addition to the separability property, the binary

array exhibits a discrete autocorrelation (e.g., Fig. 4)
with exactly N0Q (= 40) sidelobes of level 2, N0Q
sidelobes of level 1, and N0Q¡ 1 (= 39) sidelobes of
level 0. This implies that after nullifying the sidelobes
of level 2 (by converting the binary array into a
ternary array) only N0Q (= 40) non-zero sidelobes (all
of them §1) will remain.
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Fig. 4. Central row (positive delays) of 2-D autocorrelation of binary array.

Fig. 5. Central row of 2-D autocorrelation of ternary array.

TABLE IV
SL Polarity Versus Matrix Element Polarity

b1 b2 b3 c1 c2 c3

+ + + + + +
¡ + + ¡ + ¡
+ ¡ + ¡ ¡ +
+ + ¡ + ¡ ¡

D. Polarity Reversal Locations

The polarity reversal is intended to transform
some of the 1 elements in the binary array, into ¡1
elements, in order to nullify all the ACF sidelobes of
height 2. After polarity reversal the binary matrix will
become a ternary matrix.
There are many different ways in which this

could be achieved. With the construction algorithm
discussed above, reversing the polarity of the bits
corresponding to the third column of array B in
Table III, will nullify all the sidelobes of height 2.
The resulted discrete ACF (magnitude) is plotted in
Fig. 5. This simple rule is not the only one applicable

to binary arrays constructed by the algorithm, and
it usually does not work with randomly generated
arrays. Nullifying the level 2 sidelobes by polarity
reversal can be done for any binary array that meets
the four requirements: 1) exactly one 1 in each
column, 2) exactly three 1s in each row, 3) any
specific difference between locations of 1s within
a row will not occur more than twice, in the entire
array, and 4) if a location difference appears twice it
must be in different rows.
The rules summarized in Table IV show how

to reverse the polarity of a sidelobe. The first three
columns in Table IV refer to the columns of array B
in Table III, while the last three columns of Table IV
refer to the columns of array C in Table III.
An example will show how to apply the polarity

reversal rule. Consider, for example, the top four rows
in Table III. From the top four rows in C we note that
four delay differences appear twice: 1, 19, 35, and 66.
These repetitions will cause ACF sidelobes of height
2 at these four delays. Starting from row 1, reversing
the polarity of b3 (= 102) will reverse the polarity of
the sidelobes at delays c2 (= 66) and c3 (= 101), as
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Fig. 6. Ternary array of 40£ 120 signal.

TABLE V
Relating Frequency Element Polarity to Sidelobe Polarity

b1 b2 b3 c1 c2 c3

x1 x2 x3 x1x2 x2x3 x1x3
x4 x5 x6 x4x5 x5x6 x4x6
x7 x8 x9 x7x8 x8x9 x7x9
x10 x11 x12 x10x11 x11x12 x10x12

indicated by the last row of Table IV. Repeating
the same reversal in the second row of Table III,
namely of b3 (= 120), will reverse the polarity
of c2 (= 19) and c3 (= 85). After reversing b3 in
the 3rd and 4th rows as well, we find out that
we caused opposite polarities in one of the two
repetitions of each of the four delays (1, 19,
35, and 66). Thus the sidelobes of height 2 will
disappear. It is interesting to note that applying the
rule of reversing the polarity at the bit locations
corresponding to the 3rd column of array B, will
cause all the remaining autocorrelation sidelobes
to be ¡1. Note that reversing the polarity at bits
55, 85, and 102 will yield the same nullifying
result, but the remaining sidelobes could be both
¡1 or +1.
The described method of finding the location of

polarity changes may be generalized with the help
of Table V. The table refers, for example, to the top
four rows of Table III. The variables xi in the first
three columns of Table V can take the values §1,
representing the polarity of the corresponding time
slot. The resulted products in the last three columns
will also have values of §1, representing the polarity
of the corresponding ACF sidelobe. Referring back to
the top four rows of array C in Table III, in order to
nullify the four “level 2” sidelobes at delays 66, 19, 1,
and 35, we require the following four corresponding

equations to hold

x2x3 + x4x5 = 0

x5x6 + x7x8 = 0

x8x9 + x10x11 = 0

x11x12 + x1x2 = 0:

xi 2 (+1,¡1) (23)

This is a set of 4 equations with 12 variables, for
which there are many possible solutions. Few
examples are setting to ¡1 only the following
elements: [x2,x8] or [x5,x11] or [x3,x6,x11]
or [x3,x8,x12] or [x5,x9,x12] or [x2,x6,x9] or
[x3,x6,x9,x12].
The same approach has to be applied to the

remaining nine groups of four rows in Table III. An
identical solution can be applied to all groups, or to
some of the groups, while other solutions are applied
to the remaining groups.

III. SIGNAL BASED ON 40£120 TERNARY
ARRAY–DETAILS AND PERFORMANCES

An example of a 40£ 120 ternary array, whose
frequency locations follow the array B in Table III, is
shown graphically in Fig. 6. The phase reversal law is
reversing b3, which results the discrete ACF shown in
Fig. 5. The empty diamonds in Fig. 6 represent those
elements in which the polarity is reversed.
The details of the corresponding transmitted signal

appear in Fig. 7. The three subplots represent (from
top) amplitude, normalized frequency, and phase
coding. Because only one frequency is transmitted
during any bit, the amplitude would normally be a
constant. However, in the signal described in Fig. 7,
frequency weighting was added, by setting the
amplitudes of bits corresponding to a given frequency,
according to the weight assigned to that frequency.
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Fig. 7. Amplitude, frequency, and phase coding of 40£ 120 signal corresponding to ternary array in Fig. 6.

Fig. 8. Top: ACF of signal described in Fig. 7. Bottom: Zoom on first 4 bits.

The weight law was square root of Hamming. Such
frequency weighting reduces the ACF sidelobes
during the first bit. The resulted ACF of this signal is
plotted in Fig. 8. The delay axis of the top ACF plot
covers the full length (120 bits). The lower plot zooms
on the first 4 bits. Two quadrants of the ambiguity
function (AF) (positive Doppler only) are shown in

Fig. 9. Because of limits on the density of the mesh,
details of the AF in the first bit can be seen only in
the bottom part of Fig. 9, which zooms on the first 6
bits.
Considering hardware issues, instead of using

square root of the weight window, in both the
transmitted and reference signals, it may be preferable
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Fig. 9. Top: Ambiguity function of 120 bit signal described in Fig. 7. Bottom: Zoom on first 6 bits.

to transmit a constant amplitude signal and apply
the full weight window in the reference signal at
the receiver. The delay-Doppler response of such a
mismatched receiver will be very similar to the AF of
the amplitude weighted signal. The penalty will be a
small SNR loss.
Theoretically, such frequency weighting should

degrade the nullifying of level 2 sidelobes. A
sidelobe of level 2 was created by two different rows
(frequencies), and the polarity reversals caused the
contribution from these two frequencies to cancel
each other. If their amplitudes are different, then
the cancellation is not perfect. However, observing
the lower part of Fig. 8, we note that the nulls at
multiples of tb are below ¡50 dB, implying nearly
perfect cancellation. This resulted in from the
“separability” discussed earlier, which caused any
two rows (frequencies) that contribute sidelobes at the

same delay, to be within a group of four contiguous
frequencies, thus have similar amplitudes. As long as
we do not reshuffle the frequencies (or reshuffle but
keep each group of four together) the nullifying will
be maintained despite the added frequency weighting.
Because of the symmetry of the weight function,
another frequency shuffling approach, that will
minimize the weight effect on the sidelobe nullifying,
is to split each group of four rows into two pairs and
place them in symmetrical frequency locations. For
example, assign rows 1, 2, 3, and 4 of array B, to the
frequencies 1, 2, 39, and 40, respectively.

IV. CONSTRUCTION OF A FAMILY OF
MULTICARRIER BI-PHASE SIGNALS

It is known [7] that the number of different
primitive polynomials of degree 5 irreducible above
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TABLE VI
Correspondence Between Primitive Polynomials and Signal Arrays

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22

2 1 0 0 0 + + +

2 2 1 0 0 + + +

2 2 0 2 0 + + +

2 0 1 2 0 + + +

2 1 1 2 0 + + +

2 0 2 1 0 + + +

2 2 1 1 0 + + +

2 1 0 0 2 + + +

2 0 2 0 2 + + +

2 2 2 0 2 + + +

2 2 0 2 2 + + +

2 1 2 2 2 + + +

2 2 1 2 2 + + +

2 0 0 1 2 + + +

2 2 2 1 2 + + +

2 0 1 1 2 + + +

2 0 0 0 1 + + +

2 2 0 0 1 + + +

2 1 1 0 1 + + +

2 2 2 2 1 + + +

2 1 0 1 1 + + +

2 0 2 1 1 + + +

GF(3) is R

R =
'(35¡ 1)

5
= 22 (24)

where ' is Euler’s function. If the primitive
polynomial of degree 5 is written as

f(x) = x5¡ a4x4¡ a3x3¡ a2x2¡ a1x¡ a0 (25)

and the companion matrix of f(x) as

H =

26666664

0 0 0 0 ¡a0
1 0 0 0 ¡a1
0 1 0 0 ¡a2
0 0 1 0 ¡a3
0 0 0 1 ¡a4

37777775 (26)

then the strings in the last column of the matrix H, for
all the 22 primitive polynomials, are listed in the first
column of Table VI.
There are two methods to construct the family

of all 22 ensembles. The first method is through
the algorithm implemented in the Matlab program
in Appendix A. But it is faster, once that algorithm
finds the first ensemble, to calculate the remaining

21 ensembles by using isomprphic multipliers. This
approach is based on the use of the formula

Dt = tD(modL+1) (27)

where t and L+1 are mutually prime, L= 120,
T = ftg is a set of coefficients, and D is a known
ENMOC. Clearly, using this second method is
possible only if one ENMOC is known. If the resulted
Dt is the same as the original D (disregarding a
change in the order of elements) then the coefficients t
are named automorphic, otherwise–isomorphic.
In order to find T = ftg it is necessary to form a

multiplicative group in Galois field GF(35) with the
order 5, which will be named G5. The multiplicative
group is

G5 = (1,3,9,27,81): (28)

It is easy to check that the results of all multiplicative
operations modulo L+1 belong to G5. The
multiplicative group can be divided into adjacent
classes hi, i= 1,2, : : : ,22 by multiplying the elements
of G5 by the elements of the multiplicative group
G120 = (1,2, : : : ,120), modulo 121. The adjacent
classes that contain identical elements are excluded.
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Fig. 10. Amplitude and normalized frequency of signal corresponding to 69£ 69 binary Costas array with square root of Hamming
frequency weighting.

Appendix B presents 22 tables corresponding to 22
arrays of signals. The top rows in the tables contain
G5 (in the first table) and all the adjacent classes (in
the remaining tables). The set T = ftg of isomorphic
coefficients will consist from one integer (any) from
every such row. The 21 arrays (S2, S3,: : : , S22) in
Appendix B were found from the ENMOC of S1
(the first column in Table II), using (27). Note that
the arrays described by the tables in Appendix B are
binary arrays that can describe a multicarrier signal.
They still have to be modified into ternary arrays in
order to represent a multicarrier bi-phase signal. The
simplest modification will be to add a negative sign in
front of all the elements in the last (third) column of
each table.
It was found that each array fits three polynomials,

and each polynomial fits three arrays. The
correspondence between arrays and polynomials is
outlined in Table VI. The rows represent polynomials
and the columns represent arrays.
The 22 tables in Appendix B are listed in a

particular way. The first row always starts with 1,
and it is followed by the rows obtained through its
automorphism. The 5th row starts with 2 (if it did
not appear already in an earlier row), and so on.
Many variations to each one of the 22 signals can be
obtained by reordering the rows (but keeping each
group of 4 rows together). Cross correlation between
pairs of signals in Appendix B yielded a typical level
of ¡35 dB relative to an autocorrelation peak.
Recall that all the 22 signals in Appendix B posses

the important “separability” property. If we are willing
to give it up, then it is possible (using random search)
to generate many more 40£ 120 binary arrays with
the following properties:

1) There is exactly one 1 in each column.
2) There are exactly three 1s in each row.
3) A specific difference between locations of 1

within a row will not occur more than twice in the
entire array.

4) If a specific difference occurs twice, the
occurrence will be in different rows.

Arrays obtained by such a random search will
usually result in (after the nullifying of sidelobes of
magnitude 2) more than 40 remaining sidelobes of
magnitude 1.

V. COMPARISON WITH COSTAS SIGNAL

Our 40£ 120 ternary signal yields a pulse
compression factor of 4800. It will be interesting to
compare its properties with those of a Costas signal
with the same compression factor. The compression
of an L element Costas signal is L2, hence we should
compare our 40£ 120 ternary signal with a 69£ 69
binary Costas signal. The Costas signal used was
picked randomly from the many (> 24) Costas signals
known at this length. Its frequency coding is:

46 7 20 63 25 14 65 48 30 36 34 11 66 24 38 57 27

37 10 19 16 17 64 1 22 15 41 56 51 29 60 26 61 2 69

23 62 49 6 44 55 4 21 39 33 35 58 3 45 31 12 42 32

59 50 53 52 5 68 47 54 28 13 18 40 9 43 8 67:

The same frequency weighting function (square root
of Hamming) was applied to the Costas signal. The
signal’s amplitude and frequency modulation are
plotted in Fig. 10. The resulted ACF is shown in
Fig. 11, and the AF in Fig. 12.
The delay axis of the zoom on the ACF plot

(Fig. 11, bottom) extends as far as 2.3 bits out of 69
bits in order to cover the same relative portion of the
pulse as in Fig. 8 (bottom), which extends as far as 4
bits out of a signal of length 120. Comparing Figs. 8
and 11 reveals similar mainlobe width. The peak
sidelobe level in the Costas case is slightly lower, due
probably to the larger number of frequencies. The
zoom in Fig. 12 is also proportional to that of Fig. 9
(bottom). In both AF plots the delay axis extends as
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Fig. 11. Top: ACF of 69 bit Costas signal. Bottom: Zoom on first 2.3 bits.

Fig. 12. Ambiguity function of 69 bit Costas signal with zoom on first 3.5 bits.

far as 1/20 of the pulse duration. In general we see
similar performances of our 40 frequency ternary
signal and the 69 frequency Costas signal.

VI. CONCLUSIONS

A new multicarrier radar signal was described.
As in Costas, only one frequency is transmitted
during any given time slot. Contrary to Costas,
each frequency is repeated several times (3 in the
examples given). Another difference is the addition

of polarity reversal (180± phase shift) in some of the
bits. Thus, while Costas signal can be described by
a binary array, our signal has to be described by a
ternary array. The given example, of 40 frequencies
and 120 bits, yields pulse compression of 4800. To
obtain such pulse compression with a Costas signal
would have required 69 frequencies. The ordering of
the sequences in frequency, and the law of polarity
reversals, can have many variations, which calls for
further study in order to optimize the AF off the
zero-Doppler cut.

944 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 42, NO. 3 JULY 2006



APPENDIX A. MATLAB PROGRAM FOR
CONSTRUCTING THE ARRAYS

% “all ensemble.m” - Creats all 40x120 Sverdlik/Levanon arrays
clear all
hh 4=[0 0 0 0; 1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 1 ]; % first 4 columns
h last col=[2 1 0 0 0; 2 2 1 0 0; 2 2 0 2 0; 2 0 1 2 0; 2 1 1 2 0; 2 0 2 1 0; 2 2 1 1 0;: : :

2 1 0 0 2; 2 0 2 0 2; 2 2 2 0 2; 2 2 0 2 2; 2 1 2 2 2; 2 2 1 2 2; 2 0 0 1 2;: : :
2 2 2 1 2; 2 0 1 1 2; 2 0 0 0 1; 2 2 0 0 1; 2 1 1 0 1; 2 2 2 2 1; 2 1 0 1 1; 2 0 2 1 1]’;

% mp are all the possible multipliers to check linear dependence
mp=[1 1 1 1; 1 1 1 2; 1 1 2 1; 1 1 2 2; 1 2 1 1; 1 2 1 2; 1 2 2 1; 1 2 2 2;: : :

2 1 1 1; 2 1 1 2; 2 1 2 1; 2 1 2 2; 2 2 1 1; 2 2 1 2; 2 2 2 1]’;
[ss,tt]=size(mp);
for pol=1:22

hh(:,:,pol)=[hh 4 h last col(:,pol)];
aa(:,1,pol)=[1 0 0 0 0]’;
bb(:,1,pol)=[1 0 0 0 0]’;
for k=1:120

bb(:,k+1,pol)=hh(:,:,pol)*(:,k,pol);
aa(:,k+1,pol)=mod(bb(:,k+1,pol),3);

end
end % of for pol=1:22
% aa are 22 arrays each 5x121. The columns are all the powers of x in the corresponding polynom
pa=1; pb=2; pc=2;
flag result=0;
results=input(‘How many ensembles to search for (1 to 22)=? ’);
while flag result<results

if pc<22
pc=pc+1;

else
pb=pb+1;
pc=pb+1;

end
poly3=[pa pb pc];
disp(‘ ’)
disp(‘ Polynomials used ’ ), disp(poly3)
enssig temp=[ ];
enssig=[ ];
r=[1:120];
lr=length(r);
aap=aa(:,:,poly3);
while lr>11

m=1+min(r);
for pol=1:3

d=1; % the row number
for n=(m+1):120

for p=(n+1):121
qq(:,:,pol)=[aap(:,1,pol) aap(:,m,pol) aap(:,n,pol) aap(:,p,pol)]’;
t=1;
while t<(tt+1) % tt is the number of columns of mp (The multiplying options)

qqq(:,:,pol)=diag(mp(:,t))*qq(:,:,pol);
sq=mod(sum(qqq(:,:,pol)),3);
if sq==zeros(1,5) % implying linear dependence

t=tt+1; % a multiplier was found. No need to try other multipliers
dd(d,:,pol)=sort([0 m-1 n-1 p-1]);
d=d+1;

else
t=t+1;

end
end % while t
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end % the loop for p
end % the loop for n
ddd(:,:,pol)=dd(:,2:4,pol);

end % the loop for pol=
dmax=d;
for p1=1:dmax-1

for p2=1:dmax-1
same ens(p1,p2)=sum(ddd(p1,:,1)==ddd(p2,:,2));
if same ens(p1,p2)==3 % all three elements identical

for p3=1:dmax-1
samep1p3(p3)=sum(ddd(p1,:,1)==ddd(p3,:,3));
if samep1p3(p3)==3

enssig temp=ddd(p1,:,1);
% creating the automorphisms
for k=1:3

stemp(k,:)=mod( [dd(p1,:,1)-dd(p1,k+1,1)], 121);
stemp(k,:)=sort(stemp(k,:));
enssig temp=[enssig temp;stemp(k,2:4)];

end % of creating automorphism
end

end
end

end
end
if length(enssig temp)<4

disp(‘ No results ’)
enssig=[ ];
break

end
enssig=[enssig;enssig temp];
dline=reshape(enssig temp,1,12);
enssig temp=[ ];
flag=0;
for q=1:12

el=find(r==dline(q));
[s1 s2]=size(el);
if s2==1 % implying not an empty matrix

elim(q)=el;
else

elim(q)=0;
flag=1; % implying that at least one element was already used

end
end
if flag==0

r(elim)=[ ]; % removing the elements used now
lr=length(r); % updating the length of r

end % the elements used were taken out of the vector r
if flag==1

disp(‘ No results ’)
break

end
end % of while lr>11
if length(enssig)==40

disp(‘ ’)
disp(‘ Resulted array ’)
disp(‘ ’)
disp(enssig) % displays the entire signal
flag result=flag result+1;

end
end % of while flag result==results-1
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APPENDIX B. ALL 22 ARRAYS

1, 3, 9, 27, 81

S1

1 36 102
35 101 120
66 85 86
19 20 55

2 10 17
8 15 119
7 111 113

104 106 114

3 64 108
61 105 118
44 57 60
13 16 77

4 27 92
23 88 117
65 94 98
29 33 56

5 43 80
38 75 116
37 78 83
41 46 84

6 30 51
24 45 115
21 91 97
70 76 100

9 71 82
62 73 112
11 50 59
39 48 110

12 34 81
22 69 109
47 87 99
40 52 74

14 72 103
58 89 107
31 49 63
18 32 90

25 53 79
28 54 96
26 68 93
42 67 95

20, 47, 56, 59, 60

S2

1 53 117
52 116 120
64 68 69
4 5 57

2 49 77
47 75 119
28 72 74
44 46 93

3 38 109
35 106 118
71 83 86
12 15 50

6 26 110
20 104 115
84 95 101
11 17 37

7 16 92
9 85 114
76 105 112
29 36 45

8 30 62
22 54 113
32 91 99
59 67 89

10 43 61
33 51 111
18 78 88
60 70 103

13 27 100
14 87 108
73 94 107
21 34 48

19 42 82
23 63 102
40 79 98
39 58 81

24 65 90
41 66 97
25 56 80
31 55 96

40, 94, 112, 118, 120

S3

1 20 86
19 85 120
66 101 102
35 36 55

2 106 113
104 111 119
7 15 17
8 10 114

3 16 60
13 57 118
44 105 108
61 64 77

4 33 98
29 94 117
65 88 92
23 27 56

5 46 83
41 78 116
37 75 80
38 43 84

6 76 97
70 91 115
21 45 51
24 30 100

9 48 59
39 50 112
11 73 82
62 71 110

12 52 99
40 87 109
47 69 81
22 34 74

14 32 63
18 49 107
31 89 103
58 72 90

25 67 93
42 68 96
26 54 79
28 53 95

19, 29, 50, 57, 87

S4

1 86 114
85 113 120
28 35 36
7 8 93

2 19 79
17 77 119
60 102 104
42 44 61

3 16 100
13 97 118
84 105 108
21 24 37

4 30 98
26 94 117
68 91 95
23 27 53

5 11 62
6 57 116
51 110 115
59 64 70

9 48 58
39 49 112
10 73 82
63 72 111

12 52 90
40 78 109
38 69 81
31 43 83

14 55 101
41 87 107
46 66 80
20 34 75

15 33 65
18 50 106
32 88 103
56 71 89

22 67 96
45 74 99
29 54 76
25 47 92
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25, 70, 75, 89, 104

S5

1 70 100
69 99 120
30 51 52
21 22 91

2 15 49
13 47 119
34 106 108
72 74 87

3 58 89
55 86 118
31 63 66
32 35 90

4 64 107
60 103 117
43 57 61
14 18 78

5 41 97
36 92 116
56 80 85
24 29 65

6 26 45
20 39 115
19 95 101
76 82 102

7 88 111
81 104 114
23 33 40
10 17 98

8 50 62
42 54 113
12 71 79
59 67 109

9 25 53
16 44 112
28 96 105
68 77 93

11 48 94
37 83 110
46 73 84
27 38 75

67, 80, 103, 115, 119

S6

1 7 33
6 32 120
26 114 115
88 89 95

2 40 51
38 49 119
11 81 83
70 72 110

3 21 99
18 96 118
78 100 103
22 25 43

4 91 105
87 101 117
14 30 34
16 20 107

5 28 64
23 59 116
36 93 98
57 62 85

8 66 75
58 67 113
9 55 63
46 54 112

10 45 92
35 82 111
47 76 86
29 39 74

12 31 73
19 61 109
42 90 102
48 60 79

13 50 65
37 52 108
15 71 84
56 69 106

17 41 94
24 77 104
53 80 97
27 44 68

38, 53, 58, 100, 114

S7

1 84 88
83 87 120
4 37 38
33 34 117

2 51 107
49 105 119
56 70 72
14 16 65

3 10 22
7 19 118
12 111 114
99 102 109

5 23 101
18 96 116
78 98 103
20 25 43

6 32 79
26 73 115
47 89 95
42 48 74

8 60 75
52 67 113
15 61 69
46 54 106

9 30 66
21 57 112
36 91 100
55 64 85

11 39 92
28 81 110
53 82 93
29 40 68

13 44 71
31 58 108
27 77 90
50 63 94

17 41 76
24 59 104
35 80 97
45 62 86

10, 28, 30, 84, 90

S8

1 85 99
84 98 120
14 36 37
22 23 107

2 63 89
61 87 119
26 58 60
32 34 95

3 13 55
10 52 118
42 108 111
66 69 79

4 15 31
11 27 117
16 106 110
90 94 105

5 82 91
77 86 116
9 39 44
30 35 112

6 25 68
19 62 115
43 96 102
53 59 78

7 54 104
47 97 114
50 67 74
17 24 71

8 46 64
38 56 113
18 75 83
57 65 103

12 45 93
33 81 109
48 76 88
28 40 73

20 49 100
29 80 101
51 72 92
21 41 70
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13, 39, 85, 109, 117

S9

1 38 97
37 96 120
59 83 84
24 25 62

2 14 66
12 64 119
52 107 109
55 57 69

3 49 114
46 111 118
65 72 75
7 10 56

4 80 102
76 98 117
22 41 45
19 23 99

5 18 110
13 105 116
92 103 108
11 16 29

6 42 77
36 71 115
35 79 85
44 50 86

8 61 89
53 81 113
28 60 68
32 40 93

9 26 100
17 91 112
74 95 104
21 30 47

15 54 88
39 73 106
34 67 82
33 48 87

20 63 90
43 70 101
27 58 78
31 51 94

26, 49, 78, 97, 113

S10

1 16 57
15 56 120
41 105 106
64 65 80

2 73 76
71 74 119
3 48 50
45 47 118

4 11 28
7 24 117
17 110 114
93 97 104

5 40 59
35 54 116
19 81 86
62 67 102

6 98 107
92 101 115
9 23 29
14 20 112

8 39 83
31 75 113
44 82 90
38 46 77

10 36 99
26 89 111
63 85 95
22 32 58

12 33 84
21 72 109
51 88 100
37 49 70

13 43 68
30 55 108
25 78 91
53 66 96

18 52 79
34 61 103
27 69 87
42 60 94

16, 23, 48, 69, 86

S11

1 37 54
36 53 120
17 84 85
67 68 104

2 9 91
7 89 119
82 112 114
30 32 39

3 41 111
38 108 118
70 80 83
10 13 51

4 94 100
90 96 117
6 27 31
21 25 115

5 57 77
52 72 116
20 64 69
44 49 101

8 73 107
65 99 113
34 48 56
14 22 87

11 26 61
15 50 110
35 95 106
60 71 86

12 40 58
28 46 109
18 81 93
63 75 103

16 59 92
43 76 105
33 62 78
29 45 88

19 42 66
23 47 102
24 79 98
55 74 97

76, 79, 106, 107, 116

S12

1 17 30
16 29 120
13 104 105
91 92 108

2 47 55
45 53 119
8 74 76
66 68 113

3 51 90
48 87 118
39 70 73
31 34 82

4 93 102
89 98 117
9 28 32
19 23 112

5 67 100
62 95 116
33 54 59
21 26 88

6 20 44
14 38 115
24 101 107
77 83 97

7 49 110
42 103 114
61 72 79
11 18 60

10 46 81
36 71 111
35 75 85
40 50 86

12 37 64
25 52 109
27 84 96
57 69 94

15 58 80
43 65 106
22 63 78
41 56 99

SVERDLIK & LEVANON: FAMILY OF MULTICARRIER BI-PHASE RADAR SIGNALS 949



8, 24, 43, 72, 95

S13

1 65 106
64 105 120
41 56 57
15 16 80

2 47 50
45 48 119
3 74 76
71 73 118

4 97 114
93 110 117
17 24 28
7 11 104

5 67 86
62 81 116
19 54 59
35 40 102

6 20 29
14 23 115
9 101 107
92 98 112

8 46 90
38 82 113
44 75 83
31 39 77

10 32 95
22 85 111
63 89 99
26 36 58

12 49 100
37 88 109
51 72 84
21 33 70

13 66 91
53 78 108
25 55 68
30 43 96

18 60 87
42 69 103
27 61 79
34 52 94

2, 6, 18, 41, 54

S14

1 89 115
88 114 120
26 32 33
6 7 95

2 72 83
70 81 119
11 49 51
38 40 110

3 25 103
22 100 118
78 96 99
18 21 43

4 20 34
16 30 117
14 101 105
87 91 107

5 62 98
57 93 116
36 59 64
23 28 85

8 54 63
46 55 113
9 67 75
58 66 112

10 39 86
29 76 111
47 82 92
35 45 74

12 60 102
48 90 109
42 61 73
19 31 79

13 69 84
56 71 108
15 52 65
37 50 106

17 44 97
27 80 104
53 77 94
24 41 68

7, 21, 63, 68, 83

S15

1 34 38
33 37 120
4 87 88
83 84 117

2 16 72
14 70 119
56 105 107
49 51 65

3 102 114
99 111 118
12 19 22
7 10 109

5 25 103
20 98 116
78 96 101
18 23 43

6 48 95
42 89 115
47 73 79
26 32 74

8 54 69
46 61 113
15 67 75
52 60 106

9 64 100
55 91 112
36 57 66
21 30 85

11 40 93
29 82 110
53 81 92
28 39 68

13 63 90
50 77 108
27 58 71
31 44 94

17 62 97
45 80 104
35 59 76
24 41 86

35, 52, 73, 98, 105

S16

1 68 85
67 84 120
17 53 54
36 37 104

2 32 114
30 112 119
82 89 91
7 9 39

3 13 83
10 80 118
70 108 111
38 41 51

4 25 31
21 27 117
6 96 100
90 94 115

5 49 69
44 64 116
20 72 77
52 57 101

8 22 56
14 48 113
34 99 107
65 73 87

11 71 106
60 95 110
35 50 61
15 26 86

12 75 93
63 81 109
18 46 58
28 40 103

16 45 78
29 62 105
33 76 92
43 59 88

19 74 98
55 79 102
24 47 66
23 42 97
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4, 12, 36, 82, 108

S17

1 25 84
24 83 120
59 96 97
37 38 62

2 57 109
55 107 119
52 64 66
12 14 69

3 10 75
7 72 118
65 111 114
46 49 56

4 23 45
19 41 117
22 98 102
76 80 99

5 16 108
11 103 116
92 105 110
13 18 29

6 50 85
44 79 115
35 71 77
36 42 86

8 40 68
32 60 113
28 81 89
53 61 93

9 30 104
21 95 112
74 91 100
17 26 47

15 48 82
33 67 106
34 73 88
39 54 87

20 51 78
31 58 101
27 70 90
43 63 94

17, 32, 46, 51, 96

S18

1 22 52
21 51 120
30 99 100
69 70 91

2 74 108
72 106 119
34 47 49
13 15 87

3 35 66
32 63 118
31 86 89
55 58 90

4 18 61
14 57 117
43 103 107
60 64 78

5 29 85
24 80 116
56 92 97
36 41 65

6 82 101
76 95 115
19 39 45
20 26 102

7 17 40
10 33 114
23 104 111
81 88 98

8 67 79
59 71 113
12 54 62
42 50 109

9 77 105
68 96 112
28 44 53
16 25 93

11 38 84
27 73 110
46 83 94
37 48 75

31, 37, 91, 93, 111

S19

1 23 37
22 36 120
14 98 99
84 85 107

2 34 60
32 58 119
26 87 89
61 63 95

3 69 111
66 108 118
42 52 55
10 13 79

4 94 110
90 106 117
16 27 31
11 15 105

5 35 44
30 39 116
9 86 91
77 82 112

6 59 102
53 96 115
43 62 68
19 25 78

7 24 74
17 67 114
50 97 104
47 54 71

8 65 83
57 75 113
18 56 64
38 46 103

12 40 88
28 76 109
48 81 93
33 45 73

20 41 92
21 72 101
51 80 100
29 49 70

5, 14, 15, 42, 45

S20

1 92 105
91 104 120
13 29 30
16 17 108

2 68 76
66 74 119
8 53 55
45 47 113

3 34 73
31 70 118
39 87 90
48 51 82

4 23 32
19 28 117
9 98 102
89 93 112

5 26 59
21 54 116
33 95 100
62 67 88

6 83 107
77 101 115
24 38 44
14 20 97

7 18 79
11 72 114
61 103 110
42 49 60

10 50 85
40 75 111
35 71 81
36 46 86

12 69 96
57 84 109
27 52 64
25 37 94

15 56 78
41 63 106
22 65 80
43 58 99
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61, 62, 65, 74, 101

S21

1 5 69
4 68 120
64 116 117
52 53 57

2 46 74
44 72 119
28 75 77
47 49 93

3 15 86
12 83 118
71 106 109
35 38 50

6 17 101
11 95 115
84 104 110
20 26 37

7 36 112
29 105 114
76 85 92
9 16 45

8 67 99
59 91 113
32 54 62
22 30 89

10 70 88
60 78 111
18 51 61
33 43 103

13 34 107
21 94 108
73 87 100
14 27 48

19 58 98
39 79 102
40 63 82
23 42 81

24 55 80
31 56 97
25 66 90
41 65 96

34, 64, 71, 92, 102

S22

1 8 36
7 35 120
28 113 114
85 86 93

2 44 104
42 102 119
60 77 79
17 19 61

3 24 108
21 105 118
84 97 100
13 16 37

4 27 95
23 91 117
68 94 98
26 30 53

5 64 115
59 110 116
51 57 62
6 11 70

9 72 82
63 73 112
10 49 58
39 48 111

12 43 81
31 69 109
38 78 90
40 52 83

14 34 80
20 66 107
46 87 101
41 55 75

15 71 103
56 88 106
32 50 65
18 33 89

22 47 76
25 54 99
29 74 96
45 67 92

REFERENCES

[1] Costas, J. P.
A study of a class of detection waveforms having nearly
ideal range-Doppler ambiguity properties.
Proceedings of the IEEE, 72, 8 (1984), 996—1009.

[2] Le Floch, B., Halbert-Lassalle, R., and Castelain, D.
Digital sound broadcasting to mobile receivers.
IEEE Transactions on Consumer Electronics, 35, 3 (1989),
493—503.

[3] Levanon, N., and Mozeson, E.
Radar Signals.
New York: Wiley, 2004.

[4] Sverdlik, M. B., and Meleshkevich, A. N.
Synthesis of ensembles of pulse sequences with
properties of “not more than one coincidence.”
Radio Engineering and Electronic Physics, 21, 7 (1976),
61—68.

[5] Rao, C. R.
Finite geometries and certain derived results in theory of
numbers.
Proceedings of the National Institute of Science, India, 11
(1945), 136—149.

[6] Albert, A. A.
Fundamental Concepts of Higher Algebra.
Chicago: The University of Chicago Press, 1956, ch. IV.

[7] Dickson, L. E.
Linear Groups with an Exposition of the Galois Field
Theory.
New York: Dover, 1958, ch. III.

952 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 42, NO. 3 JULY 2006



Meshulim B. Sverdlik was born in Rovno, Poland, in 1925. He actively
participated in WWII. He received the Dipl. Eng. degree in electronics in 1951
from the Electro-Technical Institute in Odessa, the degree of Candidate of
Sciences (which corresponds to the Ph.D. in the West) in 1959, in theoretical
communication, and a D.Sc. in radar and navigation engineering in 1974, from
the Polytechnic University in Odessa.
From 1952 to 1964 he worked on radar systems at the Novosibirsk Scientific

complex. From 1964 to 1994 he was Chairman of the Department of Radio
Systems at the Polytechnic University in Odessa.
Dr. Sverdlik has published more than 100 papers (of which about 50 appeared

in foreign journals), 15 books, and has 18 patents. He has guided 33 doctoral
candidates and 3 Doctor of Science candidates. In 1994 he immigrated to Israel,
were he continued his research activity as a free lance.

Nadav Levanon (S’67–M’70–SM’83–F’98–LF’06) received the B.Sc. and
M.Sc. degrees from the Technion—Israel Institute of Technology, in 1961 and
1965, and a Ph.D. from the University of Wisconsin—Madison, in 1969, all in
electrical engineering.
He has been a faculty member at Tel Aviv University since 1970, where he

is a professor in the Department of Electrical Engineering–Systems. He was
chairman of that department during 1983—1985. At Tel Aviv University he is also
head of the Weinstein Research Institute for Signal Processing and incumbent of
the Chair for Radar, Navigation and Electronic Systems. He spent sabbatical years
at the University of Wisconsin, The Johns Hopkins University Applied Physics
Laboratory, and at Qualcomm Inc., San Diego, CA.
Dr. Levanon is a member of the ION and AGU, and a Fellow of the IET. He

is the author of the book Radar Principles (Wiley, 1988) and coauthor of Radar
Signals (Wiley, 2004).

SVERDLIK & LEVANON: FAMILY OF MULTICARRIER BI-PHASE RADAR SIGNALS 953


