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Abstract: Recent progress in bistatic radar techniques can be used to improve performances of classical monostatic radar. A
prominent limitation of coherent radar is its inability to measure the complete velocity vector (magnitude and direction) of a
detected target. A single coherent detection can provide range-rate only. At least two detections, separated in time, are needed
to estimate the target's velocity vector. This study discusses how the velocity vector can be determined by two simultaneous
detections spaced in distance. The second detection is obtained by an auxiliary distant bistatic coherent receiver; an approach
proposed in the 1990s to enhance meteorological radar. Being a very simple case of a distributed radar system allows for a
simple demonstration of how to calculate the target's position and velocity vector and how to analyse the estimation accuracy,
including geometric dilution of precision plots of the velocity error. Also discussed are two methods to identify correct data
association when more than one target is detected.

1 Introduction
Single detection of a target by basic monostatic two-dimensional
(2D) coherent radar can estimate the target's azimuth, range and
range rate. Position resolution depends on the waveform's
bandwidth and the antenna beamwidth. Range-rate resolution
depends on the duration of the coherent processing interval. A
single measurement of position and range rate does not provide
complete target motion information (velocity magnitude and
velocity direction). As Fig. 1 shows, a specific range rate can fit
infinitely many velocity vectors (red lines). This paper
demonstrates how data from simultaneous detection by an
auxiliary, coherent, bistatic receiver, can select the true velocity
vector (black arrow). 

Fig. 2 shows that an iso-range-rate contour (a solid black line)
is simply a straight line on the vx, vy plane, perpendicular to the
radial direction to the radar (dashed red line), determined by the
antenna pointing direction. Fig. 2 also shows (diamond markers)
several velocity vectors, all corresponding to the same range rate of
−10 m/s. 

If velocity magnitude and direction are needed from monostatic
radar, at least two repeated measurements are required, spaced in
time (tracking). Our paper considers an alternative approach – the
two measurements are spaced geographically. The second
measurement is taken simultaneously by an auxiliary bistatic
coherent receiver. The receiver receives both the direct radar
transmission and the delayed reflection from the target. Fig. 3
describes the scene this paper considers. Using a remote bistatic
receiver to retrieve vector winds was proposed and tested together
with meteorological radar [1–3]. In meteorological applications,
the target is relatively large atmospheric volume containing
precipitation particles. Separate passive radar receivers have been
used for many other applications, most prominently in air defence
[4], where other issues like extending range and covert operation
were the motivation. To continuously support primary radar when
its antenna beam changes direction, the antenna of the auxiliary
receiver needs to have wide beamwidth. A wide-beamwidth low-
gain antenna is simple to implement but implies short-range
applications. Long-range applications of separate bistatic receiver
(not considered here), which requires high-gain narrow-beam
antenna, can utilise the complex technique of ‘pulse chasing’ [4,
Section 13.2]. 

Recent technical progress in bistatic radar [5, 6] prompts
adapting the idea used in meteorology to point-like moving targets,
several of which can exist within the volume considered in
meteorology. The system considered here is perhaps the simplest
case of a 2D distributed radar system (DRS). To keep the radar
system simple, the auxiliary receiver makes its own coherent
detections on a (bistatic) range/range-rate map, namely on a rb, ṙb
plane, where rb is defined in (1) or (3). It then relays those two
measurements, for each detected target, to the primary radar
processor. This concept is termed decentralised radar network
(DRN) [5], or non-coherent DRS [7, 8]. When the distance to the
auxiliary receiver is relatively small, different approaches for
transferring auxiliary receiver data to the main radar can be used,
like optical fibre [9] or microwave link [10].Fig. 1  Contribution of the auxiliary receiver
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The scene in Fig. 3 contains: the radar transmitter and receiver
(point A), the auxiliary receiver (point B), the baseline (b), two iso-
range contours (solid, black, circles) from the radar (r1) and two
contours (dash, red, ellipses) of half the iso-bistatic-range

r1 + r2 − b /2 = rb − b /2 (1)

The shaded area around the target area (point C) represents a
position resolution cell defined by the four contours. That cell will
be referred to as a ‘bistatic azimuth resolution’. This resolution is
geometry dependent. In most cases, the radar's ‘intrinsic antenna
azimuth resolution’ will be much better than the ‘bistatic azimuth
resolution’. The latter will not help in estimating the target's
position, but will play an important role in measurements
association.

The more important contribution of the auxiliary receiver is
expanding the scalar range rate ṙ1 into a vector vx, vy  describing
the target velocity along the two axis X and Y. That additional
information requires that in addition to the range-rate measurement
ṙ1, performed by the radar receiver, the auxiliary receiver will
measure the bistatic range rate ṙ b. The four target's unknowns
x = [x, y, vx, vy]T, can be solved by least squares, using the five
measurements z = [r1, rb, ṙ1, ṙb, α]T, where α is the radar's antenna
beam direction. Direct expressions of x can be derived when only
four measurements are used, e.g. [r1, ṙ1, ṙb, α].

The simplicity of the system: one coherent 2D radar with
narrow-beam antenna and one remote coherent receiver with wide-
beam antenna makes it relatively practical to implement and simple
to analyse, including in case of more than one target, which more
general discussions [e.g. 7, 8] avoid.

The following sections will: (i) describe how to solve x given z;
(ii) present Monte-Carlo simulation results of the expected error
spread of the elements of x; (iii) display a contour plot of the
geometric dilution of precision (GDOP) of the calculated velocity;
(iv) suggest incoherent fusion of targets’ data, when several targets
are detected simultaneously.

It is difficult to predict future use of an idea, but we feel that the
advantage of the proposed concept is in short-range radar
applications, where the radar scene changes rapidly and does not
allow calculating the target velocity vector over multiple dwells.

2 Solving target's parameters

Direct analytical non-linear expressions for z = h(x) can be easily
derived and are given below. Due to the non-linearity the inverse
operation can preferably be solved iteratively using a simple least-
squares algorithm (Gauss–Newton method) [11], which will be
outlined also.

Let the radar coordinates be given by x1, y1 , the auxiliary
receiver by x2, y2 , the target by (x, y) and the baseline length by b.
The resulted ranges are given by

ri = x − xi
2 + y − yi

2 1/2, i = 1, 2 (2)

rb = r1 + r2 (3)

The range rates ṙ1 and ṙb are measured through the Doppler shifts
of the returns at each of the receivers, and the angle to the target α
is the angle measured from the radar's transmitter/receiver. The
measurements are hampered by errors, represented by the five-
element vector u, thus

z = h(x) + u (4)

Following Gauss’ method of linearisation, we use the 5 × 4 partial
derivative matrix H (see Appendix)

H = H(x) = ∂h
∂x (x) (5)

and apply the iterative algorithm

x^k + 1 = x^k + H^ TWH^ −1
H^ TW z − z^ (6)

Normally, W is obtained from the inverse of the covariance of the
measurements error vector

W = Λ−1 = cov u ⋅ uT −1 (7)

If the different elements of the noise vector u are independent, W
simplifies to a diagonal matrix

Fig. 2  Iso-range-rate contours on the vx, vy plane and several velocity
vectors with ṙ = − 10 m/s

 

Fig. 3  Bistatic radar scene
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diag W = σr1
−2 σrb

−2 σṙ1
−2 σṙb

−2 σα
−2 (8)

where σl
2 is the standard deviation of the noise element of the

measurement l (where l is r1, rb, ṙ1, ṙb and α).
W can provide means to emphasise the influence of specific

measurements upon x^ , the estimated unknowns. For example, if the
radar antenna beamwidth is relatively wide, W5,5 will be assigned a
small value, while if the beamwidth is narrow W5,5 will be
increased, while W2,2 (the weight of the bistatic range rb) can be
decreased.

x^k and x^k + 1 are the current and next target's position and
velocity estimates. The subscript k represents the iteration number,
with k = 0 representing the first guess

H^ = H x^k (9)

is the partial derivative matrix calculated at the current target's
position and velocity estimates, and

z^ = h x^k (10)

are the expected error-free measurements calculated using the
current target's position and velocity estimates. Normally, the
iterations terminate when the correction from x^k to x^k + 1 becomes

negligible. Our simulations show that, for a reasonable first guess,
10–20 iterations will suffice.

From the discussion above we might incorrectly conclude that
having a rotating narrow-beam radar antenna diminishes the value
of the bistatic range measurement rb. Such a conclusion will not
hold in a practical scenario, where there are likely to be several
moving targets. Prior to processing the detection information from
the two sources (radar and auxiliary receiver), the processor needs
to perform registration of targets. Namely, pair the same target data
from the two sources. Such pairing will rely heavily on the rb
measurement, obtained by the auxiliary receiver.

3 Simulation results
The spread of estimated target positions (x, y) and velocities (vx, vy)
was obtained from Monte-Carlo simulations. Each simulation was
repeated 500 times with different random measurement errors
taken from N 0, σi

2 , i = 1, 2, …, 5. The standard deviations σi of
the measurements errors are listed in the figures’ titles. Fig. 4 was
obtained using all five measurements (azimuth included). The
diagonal elements of the weight matrix W were set to

diag W = 1 0.001 1 1 1000 (11)

Note the small value of W2,2 (the weight assigned to the bistatic
range rb) and the large value of W5,5 (the weight assigned to the
angle α). The small weight assigned to the bistatic range
measurement rb does not imply that this measurement is not
needed. It is crucial to the proper registration of detected targets in
both sites. The true target parameters:
x = 70 m, y = 165 m, vx = − 10 m/s, vy = − 5 m/s, appear as red
markers on the drawings. Fig. 4 demonstrates the performances
when the radar utilises narrow antenna beamwidth. The beamwidth
influences not only the accuracy of the estimated position but also
the accuracy of the estimated target velocity vector, although
without the auxiliary receiver a velocity vector (vx, vy) will not be
available at all, only the range rate ṙ1 would.

4 GDOP plots
The Monte-Carlo simulations described in the previous section
applied to one location. A more general picture of the expected
performances (position and velocity resolutions and accuracies)
over a larger geometrical map can be obtained by using contour
maps of the GDOP [12–14]. In our five measurement case, two
measurements are in distance units (m), two in velocity units (m/s)
and the fifth is in radians. For such a case, the position GDOP
(GDOP-P) and the velocity GDOP (GDOP-V) can be defined as

GDOP − P = G1, 1 + G2, 2 (12)

GDOP − V = G3, 3 + G4, 4 (13)

where

G = HT W H
−1 (14)

The diagonal weight matrix W reflects the different measurement
errors and the importance assigned to a specific measurement.
Thus, to describe the estimation without using the radar antenna
beamwidth we would have selected
diag(W) = 1 1 1 1 1/1000 , while when using an azimuth
measurement we selected diag(W) = 1 0.0001 1 1 10000 .
When using the latter W the resulted GDOP-V is as presented in
Fig. 5. The GDOP-V plot shows relatively small GDOP-V in a
direction perpendicular to the baseline, increasing towards the
directions of the baseline. Fig. 5 matches Fig. 4b in [3]. 

5 Fusion
We assume that both the radar and the auxiliary receiver include
moving target indicators (MTI) and good pulse-Doppler

Fig. 4  Simulation results with azimuth measurement: (top) position,
(bottom) velocity
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processing, hence eliminate stationary clutter. Even when the radar
uses a narrow-beam antenna, it is likely that more than one moving
target will be simultaneously illuminated and detected by the radar
and the auxiliary receiver. Since the gain of the wide-beamwidth
auxiliary receiver's antenna is expected to be relatively small, it is
possible that not all the targets detected by the radar receiver will
be detected by the auxiliary receiver.

Fig. 6 displays a range/range-rate output (in dB) obtained
experimentally [15] by a bistatic coherent receiver. The scene
contained two moving targets (cars), one approaching and one
receding. The Doppler processor contained MTI circuitry that
removed the strong clutter column around zero range rate. CFAR
detection will produce range and range-rate numbers for each one
of the two targets. In Fig. 6 range is rb − b /2. 

To be able to use both detections and get the benefits described
in the previous sections, the central processing has to pair
simultaneous detections, obtained at the two receivers, to belong to
the same target. Such fusion is far from being trivial.

One option is to pair each detection and related measurements
by one receiver with all the detections by the other receiver, and
pick the correct pair. We will consider that approach assuming two
targets detected in both receivers. The radar scene used to

demonstrate fusion is depicted in Fig. 7. It is on a larger geometric
scale than used in the previous section. The base line is 1000 m
long. The two targets T1 and T2 are placed on the same azimuth
line from the radar, as expected if both are simultaneously
illuminated by a narrow beam radar antenna. 

Four cases were simulated and are listed in Table 1. Case #1 is
shown in Fig. 8. The measurements from target 1 (T1), in both
receivers, were associated correctly. The top subplot shows the
resulted target position estimates after 500 Monte-Carlo simulation
runs. The bottom subplot shows the velocity vector estimation
results. Note the estimation results (black dots) surrounding the
true values (red diamonds). Note (top subplot) that the estimated
positions are spread around the true target position, while the
estimated velocity values (bottom subplot) are spread along a line
with the true velocity value at its centre. In case #2, the
measurements from target 2 were associated correctly. The results
(not shown) exhibit the same behaviour as in Fig. 8, but around T2
and V2. Results from an erroneous association (case #3) are
presented in Figs. 9 and 10, which differ by the W used. In case #3,
the measurements by the radar are related to target 1 and the
measurement by the auxiliary receiver are related to target 2. We
see that the position determination remains almost correct, near T1,
because it is mostly determined by the radar measurements r1, α,
while the velocity vector determination is shifted towards V2,
because rb, ṙb were taken from target T2. A similar outcome (not
shown) was observed for case #4. 

Note that in the estimation algorithm in this section we used
diag(Wa) = 1 0.0001 1 1 10, 000 , while the measurements
vector was z = r1, rb, ṙ1, ṙb, α T. The very small weight assigned to
the bistatic range rb is responsible for the fact that in Figs. 8 and 9
the measured positions of T1 are almost the same, despite the fact
that in Fig. 9 rb applies to the wrong target T2. If we repeat the
estimation using a weight matrix Wb giving more weight to rb and
less to α, such as diag(Wb) = 1 1 1 1 0.001 , the resulted
estimation for case #3 becomes dramatically different (Fig. 10).

The estimated position in Fig. 10 is ∼1200 m off the true
position. If that modified weight matrix would have been applied to
case #1 (correct assignment) the change in the estimated T1
position would have been smaller than 20 m.

The above results suggest a possible indication of an erroneous
association: perform two target position estimations using the two
different weight matrices Wa and Wb. If the two resulted target
positions are very close to each other the measurement association

Fig. 5  GDOP-V contours when using azimuth measurement. Cartesian
coordinates in meters

 

Fig. 6  Bistatic receiver output on a range/range-rate display with two
moving targets (colour bar in dB)

 

Fig. 7  Radar scene with two targets
 

Table 1 Targets associated with measurement sources
Case 1 2 3 4
Source and
measurements

Fig. 8  Figs. 9,
10

 

radar: r1, ṙ1, α T1 T2 T1 T2
auxiliary receiver: rb , ṙb T1 T2 T2 T1
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is correct. Then accept the position and velocity results obtained
with Wa.

An alternative approach to identify erroneous association is to
run the estimation algorithm using a weight matrix Wc that is the
inverse of the expected measurements error covariance matrix,
defined in (7), and then calculate the normalised residual (the fit
error)

ε2 = z − z^ TWc z − z^ (15)

where z^ are the measurements expected from the last position and
velocity estimates x^ . Small residual implies correct association.

Fig. 11 shows the probability density functions (PDFs) of the
residuals obtained from 500 Monte-Carlo trials. The top subplot
applies to case #1 (correct association). The bottom subplot applies
to case #3 (erroneous association). The very large separation
between the two PDFs indicates that it will be relatively simple to
set a threshold that will guarantee correct decision after a single
detection. The weight matrix used to obtain Fig. 11 was
diag(Wc) = 1m−2 1m−2 1(m/s)−2 1(m/s)−2 (π /180)−2rad−2 . 

After correct fusion the available output contains the positions
of the two targets and their respective velocity vectors. An example
appears in Fig. 12. To make the velocity vector more readable it
appears as a line extending from the estimated target position to
where the target will be after Δt seconds (Δt = 40 s was used in
Fig. 12) and assuming no manoeuvring. Fig. 12 contains the
outcome of seven simulation runs. 

6 Conclusions
In order to determine the velocity magnitude and direction of a
target, conventional 2D coherent radar needs at least two
measurements spaced in time. Our paper shows how velocity can
be determined by two simultaneous measurements spaced in
distance. The target's velocity magnitude and direction, rather than
just its range rate, can be obtained by additional simultaneous
measurements from an auxiliary bistatic coherent receiver. The
auxiliary receiver needs to receive both the radar signal, through
direct reception (or physical link) and the signal reflected from the
target; coherently detect the target and relay its estimate of the
bistatic range and range rate, to the radar's processor. Fig. 6, taken

from experiments described in [15], presented an example of such
measurements.

Coherent detection at the auxiliary receiver involves oscillators’
synchronisation, which is a major topic by itself that we did not
expand on. We only point out that some systems use global
positioning system [16] and some use direct detection [17].

Fig. 8  Two target scene, correct fusion related to target 1 (case#1)
 

Fig. 9  Two target scene, erroneous fusion (case#3)
diag(Wa) = [1 0.0001 1 1 10000]

 

Fig. 10  Two target scene, erroneous fusion (case#3)
diag(Wa) = 1 1 1 1 0.001
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The proposed scheme is perhaps the simplest 2D case of a DRS
using a DRN.

Being a simple system it allowed a detailed demonstration of
calculating the target's position and velocity vector from the
combined set of measurements, taken simultaneously at two
locations. The paper also provided a GDOP contour map of the
resulted target's velocity errors. Also discussed was the issue of
possible erroneous fusing of data coming from two sources, when
two (or more) targets are illuminated by the radar antenna beam.
Two approaches of identifying erroneous association were
suggested and demonstrated by simulation.

The approach suggested here may find use in short-range radar
scene that changes quickly, of which automotive radar is an
example.
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8 Appendix
 
8.1 Derivative matrix H

H =

∂r1

∂x
∂r1

∂y
∂r1

∂vx

∂r1

∂vy

∂rb
∂x

∂rb
∂y

∂rb
∂vx

∂rb
∂vy

∂ṙ1

∂x
∂ṙ1

∂y
∂ṙ1

∂vx

∂ṙ1

∂vy

∂ṙb
∂x

∂ṙb
∂y

∂ṙb
∂vx

∂ṙb
∂vy

∂α
∂x

∂α
∂y

∂α
∂vx

∂α
∂vy

(16)

∂r1

∂x = x − x1

r1
(17)

Fig. 11  PDF of fit error, (top) case #1, (bottom) case #3
 

Fig. 12  Estimated positions and velocities of two targets, obtained in
seven simulation runs. Same parameters but different random seeds. The
true positions appear as red diamonds
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∂r1

∂y = y − y1

r1
(18)

∂r1

∂vx
= 0, ∂r1

∂vy
= 0 (19)

∂rb
∂x = x − x1

r1
+ x − x2

r2
(20)

∂rb
∂y = y − y1

r1
+ y − y2

r2
(21)

∂rb
∂vx

= 0, ∂rb
∂vy

= 0 (22)

ṙi = dri
dt = vx x − xi + vy y − yi

ri
(23)

∂ṙi
∂x = vx

ri
− ṙi x − xi

ri
2 , i = 1, 2 (24)

∂ṙi
∂y = vy

ri
− ṙi y − yi

ri
2 , i = 1, 2 (25)

∂ṙi
∂vx

= x − xi
ri

, i = 1, 2 (26)

∂ṙi
∂vy

= y − yi
ri

, i = 1, 2 (27)

∂ṙb
∂x = ∂ṙ1

∂x + ∂ṙ2

∂x (28)

∂ṙb
∂y = ∂ṙ1

∂y + ∂ṙ2

∂y (29)

∂ṙb
∂vx

= ∂ṙ1

∂vx
+ ∂ṙ2

∂vx
(30)

∂ṙb
∂vy

= ∂ṙ1

∂vy
+ ∂ṙ2

∂vy
(31)

∂α
∂x = − y − y1

r1
2 (32)

∂α
∂y = x − x1

r1
2 (33)

∂α
∂vx

= 0, ∂α
∂vy

= 0 (34)

8.2 Direct solution using four measurements r1, ṙ1, ṙb, α

Given the measurements r1, ṙ1, ṙb, α , a direct solution for the target
location [x, y] and velocity vector [vx, vy] can be derived, by
defining these parameters (Fig. 13)

r2 = r1
2 + b2 − 2r1bcos α (35)

ṙ2 = ṙb − ṙ1 (36)

The target location can easily be calculated as

x = r1cos α
y = r1sin α

(37)

Using the relation for the range rates

ṙ1 = vxx + vyy
r1

ṙ2 = vx(x − b) + vyy
r2

, (38)

the velocity vector is calculated as

vx = r1ṙ1 − r2ṙ2

b

vy = −r1(x − b)ṙ1 + r2xṙ2

yb

(39)

Fig. 13  Definitions for the direct solution
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