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Abstract  —  Radar pulse waveforms, binary-coded according to 
Golay’s complementary pairs, exhibit two valuable properties: (a) 
Pulse-compression to the duration of one code element, (b) Zero 
autocorrelation (ACF) sidelobes for the entire pulse duration. 
Number theorists are interested in enumerating as many different 
code sequences as possible. However, radar engineers may ponder 
the value of a large selection of different sequences (at a given 
length) beyond the benefit of enhanced waveform diversity. The 
paper considers two sequence-dependent properties: (a) The height 
of the recurrent ACF peaks around delay equal to odd number of 
PRIs, (b) The delay-Doppler response, namely, the ambiguity 
function. 

Index Terms — Radar waveforms, pulse compression, delay 
sidelobes, complementary pairs, ambiguity function. 

I. INTRODUCTION 

A Golay [1] pair is a set of two binary sequences whose 
autocorrelation functions (ACF) sum to yield zero sidelobes. 
When used as radar waveforms, they are referred to as 
complementary pairs. Complex elements can also be used [2]. 
Devising construction algorithms of binary complementary 
pairs, and performing exhaustive searches, are research topics 
in number theory [3-5].  

As a radar pulse waveform, the main advantage of 
complementary pairs is the zero level of the ACF near-
sidelobes, which is a rare property of pulse compression 
waveforms. Unfortunately, it comes with an inherent poor 
recurrent sidelobes, around delays equal to the pulse repetition 
interval (PRI). At that delay the received first-pulse coincides 
with the second-pulse of the stored reference pair. These 
properties are demonstrated using a complementary pair of 
length 26. The phases of the pair are: 

The a-periodic autocorrelation functions (ACF) of each 
coded pulse are shown in subplots (a) and (b) of Fig. 1. Note 
the equal magnitudes but opposite polarities at each delay, 
except at the origin. That fact is responsible for the sidelobes 
cancellation when the sidelobes of the two correlations are 
added. Such addition happens when a train of repeated 
complementary pulse pairs { }1 2 1 2 1 2 1 2 .....s s s s s s s s  is 
cross-correlated with at least one reference pair. The resulted 
periodic correlation, with a reference containing one 
complementary pulse pair { }1 2s s , is shown in subplot (c) of 

Fig. 1. Selected duty cycle of d = 0.2 resulted in a PRI five 
times longer than the pulse duration, namely  

26 0.2 130r p b b bT t d Lt d t t= = = =              (1) 

where tb is the duration of a code element (bit), L is the code 
length, tp is the pulse duration and Tr is the PRI. 

The main property of a complementary pair is demonstrated 
in Fig. 1(c) by the zero near-sidelobes at 1 26bt Lτ≤ ≤ = . 
When the delay equals the PRI, signal and reference pulses 
overlap again but now the overlapping pulses are not matched. 
Signal pulse #1 aligns with reference pulse #2 and signal pulse 
#2 overlaps reference pulse #1. This results in the recurrent 
delay lobes at the delay spans 
( ) ( ) ( ) ( )130 26 130 26r p b b r p bT t t t T t tτ− = − < < + = +    (2) 

Note from Fig. 1(c) that for this complementary pair the 
peak sidelobe ratio of the recurrent delay lobes is 

( )1020 log 8 52 16.25dB= − . When Doppler,ν, resolution is 
desired, the pulse-pair is repeated to create a coherent pulse 
train. Coherently processing a train of P pulses (namely P/2 
pairs) will result in Doppler resolution of ( ) 1

rPTν −
∆ = . 

II. PERFORMANCE DIFFERENCES 

The contribution of our paper relates to the previous two 
paragraphs. We show that different complementary pairs 
produce different correlation recurrent delay sidelobes, with 
peak values that can be considerably different. Using the 
periodic ambiguity function [6], we will also show that 
complementary pairs, exhibiting low recurrent correlation 
sidelobes, produce more favorable delay-Doppler response. 

“Best” and “Worst” complementary pairs were obtained 
from 109 pairs of length 40, listed in Table 3 of [4]. The 
best/worst pair yields the lowest/highest recurrent sidelobe 
peak. Their hexadecimal forms are 

F11255BB8F
best =

F1DDA5B770




C91F505239
worst=

C91F5FADC6




 

The corresponding delay-Doppler responses appear in Figs. 
2 and 3, respectively. Note that 16 complementary pairs (P=32 
periods), with PRI 90r bT t= , were processed coherently. Note 
also that the reference signal was inter-pulse Hamming 
weighted (Fig. 4) in order to lower the Doppler sidelobes of 
the delay-Doppler response. 
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Fig. 1. (a) ACF of 1st coded pulse; (b) ACF of 2nd coded pulse; (c) Periodic cross-correlation between a train of 
repeated pulse pairs and a reference containing one pair. The separation between pulses is 78 bits. 
 

 
Fig. 2. Periodic delay-Doppler response of the “best” complementary pair of length 40 
(The source of “ridge” at 16rPTν =  is attributed to the fact that the true period of the signal is 2 rT . ) 
A simple MATLAB script to obtain the normalized periodic recurrent sidelobes at zero Doppler is: 
abs(xcorr(s1,s2)+xcorr(s2,s1))/(max(abs(xcorr(s1)+xcorr(s2)))) 
 



 

The zero-Doppler cut of Fig. 2 reveals much lower recurrent 
sidelobes peaks (= 0.1 = −20dB) than those of Fig. 3 ( = 0.35 
≈ −9dB). Also higher in Fig. 3, are the corresponding peaks at 

32 1,r rPT Tν ν= =⇒ . 
 

III.  DOPPLER TOLERANCE 

A well-known drawback of complementary pairs is their 
relatively poor Doppler tolerance, e.g., compared to a train of 
LFM pulses. Poor Doppler tolerance effects the delay-Doppler 
response when a receiver processor, matched to a given 
Doppler shift, compensates the inter-pulse Doppler shift, but 
not the intra-pulse shift (Fig. 5). 

 
Fig. 3. Periodic delay-Doppler response of the “worst” complementary pair of length 40  
 

 
Fig. 4. Amplitude and phase evolution of the reference to the “best” 16 complementary pairs train  
 

 
Fig. 5 Lack of intra-pulse Doppler compensation 



 

Figs. 6 and 7 display the corresponding delay-Doppler 
responses for the “best” complementary pair. A log scale, 
down to -65 dB, is used in order to see very low sidelobes. In 
Fig. 6, which displays the response of a processor matched to 

0ν = , lacking intra-pulse Doppler compensation has no 
effect. In Fig. 7, where the processor is matched to 

( )8 / rPTν = , the missing intra-pulse Doppler compensation, 
causes a buildup of the near sidelobe to a level of -45dB. 
Fig. 8 repeats the response in Fig. 7, for the “worst” 
complementary pair. Note that the rise of the near sidelobes, 
because of missing intra-pulse Doppler compensation, grew 
from -45dB (Fig. 7) to -30dB (Fig. 8). Thus “worse”, may 
apply to more than one aspect of the response, possibly thanks 
to different reasons. In our example, the larger sensitivity of 

the “worst” signal to lacking Doppler compensation may be 
due to its relatively high individual ACF sidelobes (Fig. 9). 

   
IV. Conclusions 

 
Selecting a complementary pair sequence, of a given length, 

out of the many available ones (at most lengths), should not be 
random, just for the sake of diversity. Considerable delay-
Doppler response differences exist between different 
sequences, and they should be considered when making the 
selection. At some lengths, the number of different pairs is 
very large [3], and selection among all available pairs 
becomes impractical. There, the selection will be between 
“good” and “poor” pairs, among a relatively small group. 

 
Fig. 6 Delay-Doppler response of a processor matched to zero Doppler (no intra-pulse compensation) 

 
Fig. 7 Delay-Doppler response of a processor matched to ( )8 / rPTν =  (no intra-pulse compensation) 
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Fig. 9 Individual ACFs sidelobes of the “best” and “worst” pairs 
 
 

 

 
Fig. 8 Delay-Doppler response of a processor matched to ( )8 / rPTν =  (worst pair) 
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