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third harmonic has also been computed and found to vary from 9.1 to 
1.4 percent when dc bias is zero and 0.2 V,  respectively. The second 
harmonic thus predominates over the whole range  and is more impor- 
tant at lower  bias voltages. 
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Convergence of Polynomial  Least Nuarea End-Point 
and MidPoint  Estimators 

NADAV  LEVANON 

Alntmct-In a recent correspondence, Leskiw and Miller [ 11 obtained 
the variance of a least squares polynomial estimator, as function of the 
polynomial order, for a large number of e q d y  spaced data points, 
when the estirmte is for the end-point. A simpier proof is given, and 
the result is extended to the mid-point. A mid-pomt estimator may be 
of special interest since it exhibits the lowest variance. 

Following the analysis in [ 11, let 

x ( t ) = ~ ~ + u ~ - ~ t + ~ ~ ~ + ~ ~ ~ - ~ + u ~ t P  (1) 

be a polynomial of degree p where the coefficients ak, k = 0, 1, , p 
are unknown. Suppose we are given n equally spaced observations Zk, 
on x where 

Z k = x ( k A t ) + u k ,   k = l , 2 , . . - , n  (2) 

and #k is an additive noise. In matrix notation we  may write 

z = H p a + u  (3) 

wherez’=  {z1,.-- ,zn}andu’= {ul,...,u,)arendimensionalrow 
vectors and a’= {up, * * , u o }  is a (p + 1)dimensional row vector 
(prime denotes transpose). The n X ( p  + 1) matrix Hp in (3) is  given  by 

. .  L 1 nAt * (n Atp] 
We assume that  the noise has a zero  mean  and that its covariance 
matrix is  given  by 

cov u = u21 (5 1 
where I is ann X n  identity matrix. 

At this point we depart from the analysis  of [ 11 and note  that due to 
symmetry the variances of the estimates at  the two end-points should 
be equal, i.e., 

Varx(0) = Varx(nAt). (6 1 
We also note that 

var x(0) = var up 

and that is well known to be  given by 

var u p  = uz &l}l,l 
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where 
A, = dgP. (9) 

We will now obtain  a simple expression for Ap, using the fact that  the 
number of observations -n is large [ 61. 

Using (4) in (9)  and multiplying and dividing by At we get 

Now let us define 
iAt = t 

and 
n A t = T  

(11) 

(1 2) 

where T is the total observation period. Finite T and  large n imply 
At << T. Hence it is  permissible to replace the sum  by  an integral. 
Thus 

T Tk+l 5 (iAt)kAt = t k  dt = k+ l .  (13) 
i= 1 

Using (12) and (13) in (10) we get 

T Tp - 
1 -  

2 P + l  
T  TZ 

... - 

- -  ... - 
p + 2  . 

T2P -- ... - 
p + l   p + 2  2p + 1- 

As was pointed out in [I] ,  &l}l,l is  simply  given  by 

which  leads to the result obtained in [ 11. 

2 (P + 112 var x(0) = var x ( T )  = u -. (16) n 

We will now extend this result to  the mid-point and seek Var x(T/2). 
This is  easily done by shifting t = 0 to the mid-point and noting, 
similarly to (13),  that 

Tk+l 

n/2 (jAt)kAt%IT’z t k d t =  fk@+ l)’ k + 1 odd . (17) 

i=-n/Z *-TI2 0, k + 1 even 

Using (12) and (17) in (10) we get 

I :  - :  I 
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The format of (18), as written, assumes that p is even. For odd p ,  the 
last column and row s t a r t  with 0. 

It can be  shown [2, pp. 429-4311 that 

where 

r ;{ p9 p odd 
p +  1 ,  p even 

and where 

r ! ! = l X 3 X 5 X . . . X r .  (20) 

Using an expression for an odd double factorial in (19), and (19) in 
(8), we fmally  get 

where r is as in (19). Note that for larger, (21) converges to 

Varx(T/2) - - r  , r >>1. 
02 2 
n n  

The following table summarizes the end-point and mid-point variances 
for p 6 5 

~ ~~ 

P 0 1 2 3  4  5 

n 
-VarX(T/2) 1  1 - 
02 4  4  64 64 

9  9 225  225 

-Varx(T) 
n 
02 

1 4  9 16 25  36 

The table clearly  shows the advantage of using the mid-point polynomial 
least squares estimator, over the end-point one, particularly when a 
high polynomial order is used. 

Explicit expressions for the end-point and mid-point  variances, not 
limited t o  a large n ,  are given in [3],  for first- and second-degree poly- 
nomials.  These  expressions  converge, for large n ,  to  the results which 
appear in the table. 

Comment added on Janumy 6,1983 
In a recent comment to [ 1 1 ,  Tenian [4] points out  that Roschan [5] 

has given a general expression for the variance of any derivative at  the 
endpoint of the observation. Following Roschan’s approach we were 
able. to obtain a general expression for the variance of any derivative at 
the mid-point. Thus 

where 

s ={ p7 when p + q = odd 

p + 1 ,  whenp+q=even. 

Recall that q is the order of the derivative, p is the polynomial order, 
n is the number of measurements, and Tis the total observation time. 
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Load Frequency  Sampled-Data  Control with Unknown 
Deterministic Power Demand 

COR0 SHIRAI 

Abssmrct-This letter presents a sampleddata load frequency control 
method using the Lyopunov function. The proposed method is designed 
so as to absorb the unknown deterministic power demand. A numerical 
illustration is presented m order to verify the practicality of the pro- 
posed method. 

INTRODUCTION 
Since the incremental power demand in  a power system is not always 

a priori known, direct application of the  modem  control theory to the 
load frequency control (LFC) is not possible.  In order to solve this 
problem, two main methods have  been proposed [ 11, [ 21. One is to 
identify the random power demands using the observer theory. The 
other is to introduce the propotional-plus-integral type optimal control 
strategy to absorb the load disturbances. In this letter,  the identifa- 
tion of the unknown power demand is carried out by using the pseudo- 
inverse matrix. The objective of this letter is to develop a simple and 
easily implematable sampleddata LFC sbategy which can include the 
unknown deterministic power demand. The background theory of the 
proposed method is based on  the Lyapunov function. 

FORMULATION 
Consider a h e a r  timeinvariant dynamic system described  by 

i = A x + B u + F z  (1) 

where x E R n  is the state of the system, u E Rm is the control, z E Rr 
is’the disturbance, and A ,  B ,  and F are real constant matrices of appro- 
priate size. Constraints are imposed on the control variables 

l u j l s c i < a ,  i = 1 , 2 , . - . , m .  (2) 

In order to synthesize a  sampleddata controller, let us transform (1) 
into  the discrete-time equation represented by 

X(Tk+l) = @(T)x(tk) + A(T) u ( f k )  + A(T)  z ( tk)  (3) 
where it was  assumed that fk+l - tk = T = constant for all k, and 

@(T)  = exp (AT)  

A(T) = [exp ( A T )  - I ]  A-’B 

A(T) = [exp (AT)  - I ]  A - ~ F  (4) 

where I is an identity matrix. 
In order to use the Lyapunov function, we redefine the states in terms 

of steady-state priables x,  =x(tk + a) ,  ue = u(tk + a)  and 2, = 
z(tk + a),  Le., 

x(tk) = ~ ( t k )  - Xe 

W t k )  = ~ ( t k )  - ue 
Z(rk) = z( tk)  - 2,. (5) 

Substituting (5) into (3), and employing tk + a in (3), we  have 

x(tk+1) = @(T)X(tk)  + A(T) U(tk) + A(T)Z( tk ) .  (6) 
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